One instrument to rule them all: The bias and coverage of just-ID IV

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-03-01 DOI:10.1016/j.jeconom.2022.12.012
Joshua Angrist , Michal Kolesár
{"title":"One instrument to rule them all: The bias and coverage of just-ID IV","authors":"Joshua Angrist ,&nbsp;Michal Kolesár","doi":"10.1016/j.jeconom.2022.12.012","DOIUrl":null,"url":null,"abstract":"<div><p><span>We revisit the finite-sample behavior of single-variable just-identified instrumental variables<span> (just-ID IV) estimators, arguing that in most microeconometric applications, the usual inference strategies are likely reliable. Three widely-cited applications are used to explain why this is so. We then consider pretesting strategies of the form </span></span><span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mi>c</mi></mrow></math></span>, where <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the first-stage <span><math><mi>t</mi></math></span>-statistic, and the first-stage sign is given. Although pervasive in empirical practice, pretesting on the first-stage <span><math><mi>F</mi></math></span>-statistic exacerbates bias and distorts inference. We show, however, that median bias is both minimized and roughly halved by setting <span><math><mrow><mi>c</mi><mo>=</mo><mn>0</mn></mrow></math></span>, that is by screening on the sign of the <em>estimated</em><span> first stage. This bias reduction is a free lunch: conventional confidence interval coverage is unchanged by screening on the estimated first-stage sign. To the extent that IV analysts sign-screen already, these results strengthen the case for a sanguine view of the finite-sample behavior of just-ID IV.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105398"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407623000295","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the finite-sample behavior of single-variable just-identified instrumental variables (just-ID IV) estimators, arguing that in most microeconometric applications, the usual inference strategies are likely reliable. Three widely-cited applications are used to explain why this is so. We then consider pretesting strategies of the form t1>c, where t1 is the first-stage t-statistic, and the first-stage sign is given. Although pervasive in empirical practice, pretesting on the first-stage F-statistic exacerbates bias and distorts inference. We show, however, that median bias is both minimized and roughly halved by setting c=0, that is by screening on the sign of the estimated first stage. This bias reduction is a free lunch: conventional confidence interval coverage is unchanged by screening on the estimated first-stage sign. To the extent that IV analysts sign-screen already, these results strengthen the case for a sanguine view of the finite-sample behavior of just-ID IV.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一器定乾坤:公正身份证IV的偏差和覆盖面
我们重新审视了单变量公正识别工具变量(公正-ID IV)估计器的有限样本行为,认为在大多数微观计量经济学应用中,通常的推断策略可能是可靠的。我们用三个被广泛引用的应用来解释为什么会这样。然后,我们考虑了 t1>c 形式的预检验策略,其中 t1 是第一阶段的 t 统计量,第一阶段的符号是给定的。尽管在实证实践中普遍存在,但对第一阶段 F 统计量的预检验会加剧偏差并扭曲推断。然而,我们的研究表明,通过设置 c=0,即对估计的第一阶段符号进行筛选,中位偏差可以最小化,并大致减半。这种偏差的减少是免费的午餐:通过对估计的第一阶段符号进行筛选,传统的置信区间覆盖率保持不变。如果 IV 分析师已经对符号进行了筛选,那么这些结果就更能说明我们应该乐观地看待公正 ID IV 的有限样本行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1