Radiomics for the radiologist: opportunities and challenges

Michele AVANZO, Giovanni PIRRONE, Joseph STANCANELLO
{"title":"Radiomics for the radiologist: opportunities and challenges","authors":"Michele AVANZO, Giovanni PIRRONE, Joseph STANCANELLO","doi":"10.23736/s2723-9284.23.00247-9","DOIUrl":null,"url":null,"abstract":"Radiomics is a growing field where hundreds or thousands of quantitative features are extracted from a contoured region in a medical image in order to describe the image properties of a lesion or tissue. The radiomic features are then used for building an artificial intelligence-based model that can perform a diagnosis or characterization of tissues and organs. In this article we have defined the field of radiomics, its workflow and tools and describe some of the results achieved in studies applying radiomics. We also want to discuss its main limitations and strengths, in particular when compared with other artificial intelligence technique applied to imaging.","PeriodicalId":369070,"journal":{"name":"Journal of Radiological Review","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiological Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23736/s2723-9284.23.00247-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radiomics is a growing field where hundreds or thousands of quantitative features are extracted from a contoured region in a medical image in order to describe the image properties of a lesion or tissue. The radiomic features are then used for building an artificial intelligence-based model that can perform a diagnosis or characterization of tissues and organs. In this article we have defined the field of radiomics, its workflow and tools and describe some of the results achieved in studies applying radiomics. We also want to discuss its main limitations and strengths, in particular when compared with other artificial intelligence technique applied to imaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放射科医生的放射组学:机遇与挑战
放射组学是一个不断发展的领域,从医学图像的轮廓区域提取数百或数千个定量特征,以描述病变或组织的图像特性。放射学特征随后被用于建立一个基于人工智能的模型,该模型可以对组织和器官进行诊断或表征。本文介绍了放射组学的研究领域、工作流程和工具,并介绍了一些应用放射组学的研究成果。我们还想讨论它的主要局限性和优势,特别是与应用于成像的其他人工智能技术相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning and big data in precision medicine: what is the role of the Radiologist? Radiomics for the radiologist: opportunities and challenges Tools for quantitative radiology: natural and artificial intelligence together Clinical applications of artificial intelligence in Radiology: prostate magnetic resonance imaging Artificial intelligence in neuroradiology: brain CT perfusion imaging for acute ischemic stroke management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1