Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT

None Vidya Chandradev, None I Made Agus Dwi Suarjaya, None I Putu Agung Bayupati
{"title":"Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT","authors":"None Vidya Chandradev, None I Made Agus Dwi Suarjaya, None I Putu Agung Bayupati","doi":"10.24002/jbi.v14i02.7244","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has resulted in declining tourism visits and hotel occupancy. Hoteliers must monitor visitor lifestyles to sustain their businesses. One way to achieve this is by understanding the sentiment of hotel visitors through review analysis, enabling better decision-making regarding service and business aspects in the hotel industry. This research applies the natural language processing deep learning model BERT to analyze positive and negative sentiments from hotel visitor reviews in Indonesia. The BERT model undergoes a pre-trained and fine-tuned process to produce accurate sentiment analysis. Evaluation results demonstrate that the fine-tuned SmallBERT model performs well, trained on a dataset of 515k hotel reviews for five epochs. The SmallBERT model achieves an accuracy of 91.40%, precision of 90.51%, recall of 90.51%, and an F1 score of 90.51% when evaluated with manually labelled datasets. Visualizations of the predominantly positive sentiment comparisons are conducted using Tableau.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"2667 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Buana Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/jbi.v14i02.7244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic has resulted in declining tourism visits and hotel occupancy. Hoteliers must monitor visitor lifestyles to sustain their businesses. One way to achieve this is by understanding the sentiment of hotel visitors through review analysis, enabling better decision-making regarding service and business aspects in the hotel industry. This research applies the natural language processing deep learning model BERT to analyze positive and negative sentiments from hotel visitor reviews in Indonesia. The BERT model undergoes a pre-trained and fine-tuned process to produce accurate sentiment analysis. Evaluation results demonstrate that the fine-tuned SmallBERT model performs well, trained on a dataset of 515k hotel reviews for five epochs. The SmallBERT model achieves an accuracy of 91.40%, precision of 90.51%, recall of 90.51%, and an F1 score of 90.51% when evaluated with manually labelled datasets. Visualizations of the predominantly positive sentiment comparisons are conducted using Tableau.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情感分析评论酒店梦古那坎深度学习BERT方法
2019冠状病毒病大流行导致旅游人数和酒店入住率下降。酒店经营者必须监控游客的生活方式,以维持他们的业务。实现这一目标的一种方法是通过评论分析了解酒店游客的情绪,从而在酒店行业的服务和业务方面做出更好的决策。本研究应用自然语言处理深度学习模型BERT来分析印尼酒店游客评论中的积极和消极情绪。BERT模型经过预先训练和微调的过程,以产生准确的情感分析。评估结果表明,经过微调的SmallBERT模型在515k条酒店评论的数据集上进行了5个时期的训练,表现良好。当使用手动标记的数据集进行评估时,SmallBERT模型的准确率为91.40%,精密度为90.51%,召回率为90.51%,F1分数为90.51%。主要的积极情绪比较的可视化使用Tableau进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perbandingan Pytesseract dan Template Matching Untuk Otomatisasi Input Data KTP Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT Classification of Cumulonimbus Cloud Formation based on Himawari Images using Convolutional Neural Network model Googlenet Moving Average untuk Prediksi Harga Saham dengan Linear Regression Analisis Usability Web SIATMA dengan Metode Heuristic Evaluation dan System Usability Scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1