首页 > 最新文献

Jurnal Buana Informatika最新文献

英文 中文
Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT 情感分析评论酒店梦古那坎深度学习BERT方法
Pub Date : 2023-10-01 DOI: 10.24002/jbi.v14i02.7244
None Vidya Chandradev, None I Made Agus Dwi Suarjaya, None I Putu Agung Bayupati
The COVID-19 pandemic has resulted in declining tourism visits and hotel occupancy. Hoteliers must monitor visitor lifestyles to sustain their businesses. One way to achieve this is by understanding the sentiment of hotel visitors through review analysis, enabling better decision-making regarding service and business aspects in the hotel industry. This research applies the natural language processing deep learning model BERT to analyze positive and negative sentiments from hotel visitor reviews in Indonesia. The BERT model undergoes a pre-trained and fine-tuned process to produce accurate sentiment analysis. Evaluation results demonstrate that the fine-tuned SmallBERT model performs well, trained on a dataset of 515k hotel reviews for five epochs. The SmallBERT model achieves an accuracy of 91.40%, precision of 90.51%, recall of 90.51%, and an F1 score of 90.51% when evaluated with manually labelled datasets. Visualizations of the predominantly positive sentiment comparisons are conducted using Tableau.
2019冠状病毒病大流行导致旅游人数和酒店入住率下降。酒店经营者必须监控游客的生活方式,以维持他们的业务。实现这一目标的一种方法是通过评论分析了解酒店游客的情绪,从而在酒店行业的服务和业务方面做出更好的决策。本研究应用自然语言处理深度学习模型BERT来分析印尼酒店游客评论中的积极和消极情绪。BERT模型经过预先训练和微调的过程,以产生准确的情感分析。评估结果表明,经过微调的SmallBERT模型在515k条酒店评论的数据集上进行了5个时期的训练,表现良好。当使用手动标记的数据集进行评估时,SmallBERT模型的准确率为91.40%,精密度为90.51%,召回率为90.51%,F1分数为90.51%。主要的积极情绪比较的可视化使用Tableau进行。
{"title":"Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT","authors":"None Vidya Chandradev, None I Made Agus Dwi Suarjaya, None I Putu Agung Bayupati","doi":"10.24002/jbi.v14i02.7244","DOIUrl":"https://doi.org/10.24002/jbi.v14i02.7244","url":null,"abstract":"The COVID-19 pandemic has resulted in declining tourism visits and hotel occupancy. Hoteliers must monitor visitor lifestyles to sustain their businesses. One way to achieve this is by understanding the sentiment of hotel visitors through review analysis, enabling better decision-making regarding service and business aspects in the hotel industry. This research applies the natural language processing deep learning model BERT to analyze positive and negative sentiments from hotel visitor reviews in Indonesia. The BERT model undergoes a pre-trained and fine-tuned process to produce accurate sentiment analysis. Evaluation results demonstrate that the fine-tuned SmallBERT model performs well, trained on a dataset of 515k hotel reviews for five epochs. The SmallBERT model achieves an accuracy of 91.40%, precision of 90.51%, recall of 90.51%, and an F1 score of 90.51% when evaluated with manually labelled datasets. Visualizations of the predominantly positive sentiment comparisons are conducted using Tableau.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"2667 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of Cumulonimbus Cloud Formation based on Himawari Images using Convolutional Neural Network model Googlenet 基于Himawari图像的卷积神经网络模型Googlenet对积雨云形成的分类
Pub Date : 2023-10-01 DOI: 10.24002/jbi.v14i02.7417
Mohammad Rizal Abidin, None Dian candra Rini Novitasari, None Hani Khaulasari, None Fajar Setiawan
Awan Cumulonimbus (Cb) merupakan awan yang berbahaya bagi banyak aktivitas manusia. Untuk mengurangi efek tersebut diperlukan sistem untuk mengklasifikasikan pembentukannya. Pembentukan awan Cb dapat dilihat pada citra Himawari-8 IR. Tujuan penelitian ini adalah membuat sistem klasifikasi formasi awan Cb dengan citra Himawari-8 IR Enhanced menggunakan metode CNN model GoogleNet. Total data yang akan digunakan sebanyak 2.026 data citra. Pengujian parameter dilakukan pada model CNN GoogleNet pada penelitian ini yaitu rasio sebaran data 90:10 dan 80:20. Probabilitas drop out 0,6; 0,7; dan 0,8. dan batch size 8, 16, 32, dan 64. Uji coba yang dilakukan pada penelitian ini menghasilkan nilai sensitivitas 100,00%, akurasi 99,00%, dan spesifisitas 99,60% yang diperoleh dari distribusi data eksperimen sebesar 90:10, probabilitas 0,8 dan ukuran batch 8.
积雨云是一种对许多人类活动有害的云。为了减少效果,需要系统对其编队进行分类。在其8 - IR的图像中可以看到Cb的形成云。这项研究的目的是建立一种Cb云分类系统,其himawari8 IR的特点是使用CNN模型GoogleNet的方法对其进行分类。总数据将使用2026个图像数据。测试参数是在CNN的GoogleNet模型上进行的,研究对象是90:10和80:20的比率。概率下降0.6;70;和0.8。第8、16、32和64批。在这项研究中进行的测试显示,敏感性为10000%,准确率为99.00%,从实验数据分布为90:10,概率为0.8和批次大小为8批次。
{"title":"Classification of Cumulonimbus Cloud Formation based on Himawari Images using Convolutional Neural Network model Googlenet","authors":"Mohammad Rizal Abidin, None Dian candra Rini Novitasari, None Hani Khaulasari, None Fajar Setiawan","doi":"10.24002/jbi.v14i02.7417","DOIUrl":"https://doi.org/10.24002/jbi.v14i02.7417","url":null,"abstract":"Awan Cumulonimbus (Cb) merupakan awan yang berbahaya bagi banyak aktivitas manusia. Untuk mengurangi efek tersebut diperlukan sistem untuk mengklasifikasikan pembentukannya. Pembentukan awan Cb dapat dilihat pada citra Himawari-8 IR. Tujuan penelitian ini adalah membuat sistem klasifikasi formasi awan Cb dengan citra Himawari-8 IR Enhanced menggunakan metode CNN model GoogleNet. Total data yang akan digunakan sebanyak 2.026 data citra. Pengujian parameter dilakukan pada model CNN GoogleNet pada penelitian ini yaitu rasio sebaran data 90:10 dan 80:20. Probabilitas drop out 0,6; 0,7; dan 0,8. dan batch size 8, 16, 32, dan 64. Uji coba yang dilakukan pada penelitian ini menghasilkan nilai sensitivitas 100,00%, akurasi 99,00%, dan spesifisitas 99,60% yang diperoleh dari distribusi data eksperimen sebesar 90:10, probabilitas 0,8 dan ukuran batch 8.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Batik in Central Java using Transfer Learning Method 用迁移学习方法识别中爪哇蜡染
Pub Date : 2023-10-01 DOI: 10.24002/jbi.v14i02.6977
Stephanie Pamela Adithama, B. Yudi Dwiandiyanta, Sevia Berliana Wiadji
Identification of Batik in Central Java using Transfer Learning Method. Batik was recognized as a human heritage for oral and nonmaterial culture by UNESCO due to its symbolic and philosophical ties to the lives of Indonesians. However, the younger generation is gradually losing itslegacy because of technological and sociological changes that have influenced Indonesian batik. Consequently, batik knowledge is disappearing. A convolutional neural network and transfer learning techniques were utilized in deep learning to construct a model recognising batik motifs. The study utilized a dataset of one thousand images, five classes of batik designs (Banji, Kawung, Slope, Parang, and Slobog), and pre-trained architectural models VGG16 and VGG19 on Keras. The best model utilizes the VGG16 architecture, and the number of epochs is 50,with the result of testing accuracy of 0.9200.
用迁移学习方法识别中爪哇蜡染。蜡染被联合国教科文组织认定为口头和非物质文化的人类遗产,因为它与印度尼西亚人的生活有着象征性和哲学上的联系。然而,由于技术和社会的变化影响了印尼蜡染,年轻一代正在逐渐失去它的遗产。因此,蜡染知识正在消失。利用卷积神经网络和迁移学习技术在深度学习中构建蜡染图案识别模型。该研究使用了1000张图像的数据集,5类蜡染设计(Banji, Kawung, Slope, Parang和Slobog),以及Keras上预训练的建筑模型VGG16和VGG19。最佳模型采用VGG16架构,迭代次数为50次,测试精度为0.9200。
{"title":"Identification of Batik in Central Java using Transfer Learning Method","authors":"Stephanie Pamela Adithama, B. Yudi Dwiandiyanta, Sevia Berliana Wiadji","doi":"10.24002/jbi.v14i02.6977","DOIUrl":"https://doi.org/10.24002/jbi.v14i02.6977","url":null,"abstract":"Identification of Batik in Central Java using Transfer Learning Method. Batik was recognized as a human heritage for oral and nonmaterial culture by UNESCO due to its symbolic and philosophical ties to the lives of Indonesians. However, the younger generation is gradually losing itslegacy because of technological and sociological changes that have influenced Indonesian batik. Consequently, batik knowledge is disappearing. A convolutional neural network and transfer learning techniques were utilized in deep learning to construct a model recognising batik motifs. The study utilized a dataset of one thousand images, five classes of batik designs (Banji, Kawung, Slope, Parang, and Slobog), and pre-trained architectural models VGG16 and VGG19 on Keras. The best model utilizes the VGG16 architecture, and the number of epochs is 50,with the result of testing accuracy of 0.9200.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"116 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135762620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Sentimen AicoGPT (Generative Pre-trained Transformer) Menggunakan TF-IDF AicoGPT(预训练生成变换器)句法分析可识别 TF-IDF
Pub Date : 2023-10-01 DOI: 10.24002/jbi.v14i02.7039
None Sri Rahayu, None Jajang Jaya Purnama, None Abdul Hamid, None Nina Kurnia Hikmawati
Peran artificial intelligence memudahkan mencari informasi yang tepat dan akurat bahkan penyelesaian masalah dengan model yang kompleks. Salah satu terobosan berbasis AI adalah ChatGPT oleh OpenAI pada tahun 2020, dilanjutkan dengan versi terbaru pada tahun 2023 yaitu GPT–3. Sejak saat itu, beberapa teknologi AI serupa versi mobile mulai bermunculan, salah satunya AicoGPT. Namun, kinerja dari aplikasi serupa ini belum dapat diandalkan sehingga masih perlu menganalisis tanggapan para penggunanya, apakah akan sama menakjubkannya atau tidak. Dari permasalahan tersebut, penelitian ini dibuat dengan tujuan untuk menganalisis 1443 data ulasan para pengguna aplikasi AicoGPT di Google Playstore dengan teknik analisis sentimen menggunakan TFIDF dan perbandingan klasifikasi LR dan SVM. Dari kedua ujicoba tersebut, menghasilkan akurasi terbaik dengan Algoritma SVM, yaitu sebesar 92%. Sedangkan LR menghasilkan akurasi sebesar 89%. Dari penelitian ini, dapat disimpulkan secara singkat bahwa metode TF-IDF dengan klasifikasi SVM, cocok digunakan untuk melakukan analisis sentimen dari dataset yang diteliti.
人工智能的作用有助于找到复杂模型的精确和准确的信息。基于AI的突破之一是2020年OpenAI的ChatGPT,然后是2023年的GPT - 3的最新版本。从那时起,一些类似的移动版本的人工智能技术出现了,其中一个是AicoGPT。然而,类似的应用程序的性能是不可靠的,因此仍然需要分析用户的反应,不管他们的反应是否一样神奇。问题的分析,这个研究的目的是为1443 AicoGPT谷歌应用程序用户评论数据Playstore使用TFIDF情绪分析技术和LR和SVM分类比较。第二次选拔赛中,产生最好的SVM算法的准确性,即高达92%。而LR的准确性是89%。从这项研究中,可以简单地得出结论,带有SVM分类的TF-IDF方法适合对研究数据集的情感分析进行分析。
{"title":"Analisis Sentimen AicoGPT (Generative Pre-trained Transformer) Menggunakan TF-IDF","authors":"None Sri Rahayu, None Jajang Jaya Purnama, None Abdul Hamid, None Nina Kurnia Hikmawati","doi":"10.24002/jbi.v14i02.7039","DOIUrl":"https://doi.org/10.24002/jbi.v14i02.7039","url":null,"abstract":"Peran artificial intelligence memudahkan mencari informasi yang tepat dan akurat bahkan penyelesaian masalah dengan model yang kompleks. Salah satu terobosan berbasis AI adalah ChatGPT oleh OpenAI pada tahun 2020, dilanjutkan dengan versi terbaru pada tahun 2023 yaitu GPT–3. Sejak saat itu, beberapa teknologi AI serupa versi mobile mulai bermunculan, salah satunya AicoGPT. Namun, kinerja dari aplikasi serupa ini belum dapat diandalkan sehingga masih perlu menganalisis tanggapan para penggunanya, apakah akan sama menakjubkannya atau tidak. Dari permasalahan tersebut, penelitian ini dibuat dengan tujuan untuk menganalisis 1443 data ulasan para pengguna aplikasi AicoGPT di Google Playstore dengan teknik analisis sentimen menggunakan TFIDF dan perbandingan klasifikasi LR dan SVM. Dari kedua ujicoba tersebut, menghasilkan akurasi terbaik dengan Algoritma SVM, yaitu sebesar 92%. Sedangkan LR menghasilkan akurasi sebesar 89%. Dari penelitian ini, dapat disimpulkan secara singkat bahwa metode TF-IDF dengan klasifikasi SVM, cocok digunakan untuk melakukan analisis sentimen dari dataset yang diteliti.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136054798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Usability Web SIATMA dengan Metode Heuristic Evaluation dan System Usability Scale 分析可用性Web SIATMA登根法启发式评价与系统可用性量表
Pub Date : 2023-10-01 DOI: 10.24002/jbi.v14i02.5027
None Findra Kartika Sari Dewi, None Thomas Adi Purnomo Sidhi, Yonathan Christofer Darmawan
User interface dan user experience berperan penting dalam pengembangan aplikasi, yang menjadi tolok ukur keberhasilan memenuhi kebutuhan pengguna. Perlu dilakukan pengukuran usability, pencarian permasalahan dan rekomendasi perbaikan antarmuka web SIATMA, menggunakan metode Heuristic Evaluation (HE), dan System Usability Scale (SUS). Pengambilan data HE menggunakan daftar cek evaluasi yang diisi oleh evaluator dan SUS menggunakan kuesioner yang diisi oleh mahasiswa Universitas Atma Jaya Yogyakarta. Menggunakan HE ditemukan 25 permasalahan usability dengan jumlah terbanyak pada Visibility of System Status dan Aesthetic and Minimalist Design. Permasalahan tersebut terdiri dari 10 masalah cosmetic, lima masalah minor dengan, delapan masalah major, dan dua masalah catastrophe. Diberikan 25 solusi perbaikan yang direkomendasikan oleh evaluator, sedangkan menggunakan SUS dihasilkan skor SUS sebesar 54,4. Kedua hasil tersebut menunjukkan bahwa SIATMA belum memuaskan dari segi usability dan perlu dilakukan perbaikan, seperti memberikan detail minor seperti icon, peringatan sampai dengan perbaikan layout dan menambahkan halaman baru.
用户界面和用户体验在应用程序开发中扮演着重要的角色,这成为衡量成功满足用户需求的指标。使用“他”、“他”、“他”、“他”、“他”、“他”……”HE的数据检索使用评估人员和SUS提交的评估清单,使用Atma Jaya Yogyakarta大学学生提交的调查问卷。用他的研究发现,在系统状态、Aesthetic和极简设计中,他出现了25个最常见的应用问题。这些问题包括10个化妆品问题、5个小问题、8个大问题和2个大灾难问题。根据评估人员推荐的25个修复方案,使用SUS的得分为54.4。这两种结果都表明,SIATMA在usability方面都不满意,需要进行改进,比如图标这样的小细节,对布局进行改进并添加新页面的警告。
{"title":"Analisis Usability Web SIATMA dengan Metode Heuristic Evaluation dan System Usability Scale","authors":"None Findra Kartika Sari Dewi, None Thomas Adi Purnomo Sidhi, Yonathan Christofer Darmawan","doi":"10.24002/jbi.v14i02.5027","DOIUrl":"https://doi.org/10.24002/jbi.v14i02.5027","url":null,"abstract":"User interface dan user experience berperan penting dalam pengembangan aplikasi, yang menjadi tolok ukur keberhasilan memenuhi kebutuhan pengguna. Perlu dilakukan pengukuran usability, pencarian permasalahan dan rekomendasi perbaikan antarmuka web SIATMA, menggunakan metode Heuristic Evaluation (HE), dan System Usability Scale (SUS). Pengambilan data HE menggunakan daftar cek evaluasi yang diisi oleh evaluator dan SUS menggunakan kuesioner yang diisi oleh mahasiswa Universitas Atma Jaya Yogyakarta. Menggunakan HE ditemukan 25 permasalahan usability dengan jumlah terbanyak pada Visibility of System Status dan Aesthetic and Minimalist Design. Permasalahan tersebut terdiri dari 10 masalah cosmetic, lima masalah minor dengan, delapan masalah major, dan dua masalah catastrophe. Diberikan 25 solusi perbaikan yang direkomendasikan oleh evaluator, sedangkan menggunakan SUS dihasilkan skor SUS sebesar 54,4. Kedua hasil tersebut menunjukkan bahwa SIATMA belum memuaskan dari segi usability dan perlu dilakukan perbaikan, seperti memberikan detail minor seperti icon, peringatan sampai dengan perbaikan layout dan menambahkan halaman baru.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perbandingan Pytesseract dan Template Matching Untuk Otomatisasi Input Data KTP Pytesseract 与模板匹配在身份证数据输入自动化方面的比较
Pub Date : 2023-10-01 DOI: 10.24002/jbi.v14i02.7612
Teresa Octaviani, Hendry Setiawan, Oesman Hendra Kelana
KTP memiliki banyak fungsi, seperti sebagai kartu identitas, dalam proses pendaftaran, dalam proses kepengurusan, serta untuk mengakses layanan. Hingga saat ini, pendaftaran KTP dilakukan dengan diketik sehingga tidak hemat waktu dan tenaga, serta sering menyebabkan kesalahan dalam pengetikan sehingga data yang disimpan tidak sesuai. Oleh karena itu, dikembangkan aplikasi dengan fitur otomatisasi pengisian data KTPmenggunakan OCR. Metode OCRyang akan digunakan ditentukan dengan pengujian akurasi metode Pytesseract dan template matching pada kondisi menggunakan kamera smartphone dengan pencahayaan gelap, terang, terang sekali, dan menggunakan kamera laptop. Rata-rata tingkat akurasi dari empat pengkondisian yang didapatkan oleh metode Pytesseract adalah 98,33%, sedangkan rata-rata yang didapatkan oleh metode template matching adalah 67,33%. Berdasarkan hasil ini, sistem OCR yang dikembangkan menggunakan metode Pytesseract. ID Cards serve several purposes, including identification, registration, management, and accessing public services. Until now, ID Cards registration has been done by typing so it takes more time and effort, and often causes errors in typing so that the data stored does not match. Therefore, an application was developed with OCR-based automation for inputting ID card information. The method used for OCR is determined by testing the accuracy of Pytesseract and Template Matching in condition using a smartphone camera with dark, bright, and very bright lighting, and using a laptop camera. The average of the accuracy of the four conditions obtained by Pytesseract is 98.33%, while the average obtained by Template Matching is 67.33%. Based on these results, the OCR system developed using Pytesseract.
KTP有许多功能,如身份证、注册过程、管理流程以及访问服务。到目前为止,身份证登记是通过打字进行的,这样可以节省时间和精力,而且经常导致打字错误,导致存储数据不匹配。因此,使用OCR开发了具有自动补充资料功能的应用程序。OCRyang方法的使用是通过测试Pytesseract方法的准确性和与使用深色、明亮、明亮和笔记本电脑摄像头的智能手机相机匹配条件来决定的。Pytesseract方法获得的四种条件均为98.33%,而匹配模板法的平均准确率为67.33%。根据这些结果,OCR系统是使用Pytesseract方法开发的。ID ID服务于几个目的,包括标识符、注册、管理和公共服务。直到现在,ID卡注册已经被typing创建,所以它需要更多的时间和努力,并在错误中造成10个错误,这样存储的数据就不匹配了。在此之前,一个应用程序采用了一个基于身份识别技术的自驾车技术。最新的方法是用智能手机拍摄,使用黑暗、明亮、非常明亮的笔记本电脑。由Pytesseract连接的四个问题的平均计算是98。33%,而匹配模板模板的平均计算是67.33%。根据这些建议,OCR系统采用了Pytesseract。
{"title":"Perbandingan Pytesseract dan Template Matching Untuk Otomatisasi Input Data KTP","authors":"Teresa Octaviani, Hendry Setiawan, Oesman Hendra Kelana","doi":"10.24002/jbi.v14i02.7612","DOIUrl":"https://doi.org/10.24002/jbi.v14i02.7612","url":null,"abstract":"KTP memiliki banyak fungsi, seperti sebagai kartu identitas, dalam proses pendaftaran, dalam proses kepengurusan, serta untuk mengakses layanan. Hingga saat ini, pendaftaran KTP dilakukan dengan diketik sehingga tidak hemat waktu dan tenaga, serta sering menyebabkan kesalahan dalam pengetikan sehingga data yang disimpan tidak sesuai. Oleh karena itu, dikembangkan aplikasi dengan fitur otomatisasi pengisian data KTPmenggunakan OCR. Metode OCRyang akan digunakan ditentukan dengan pengujian akurasi metode Pytesseract dan template matching pada kondisi menggunakan kamera smartphone dengan pencahayaan gelap, terang, terang sekali, dan menggunakan kamera laptop. Rata-rata tingkat akurasi dari empat pengkondisian yang didapatkan oleh metode Pytesseract adalah 98,33%, sedangkan rata-rata yang didapatkan oleh metode template matching adalah 67,33%. Berdasarkan hasil ini, sistem OCR yang dikembangkan menggunakan metode Pytesseract. ID Cards serve several purposes, including identification, registration, management, and accessing public services. Until now, ID Cards registration has been done by typing so it takes more time and effort, and often causes errors in typing so that the data stored does not match. Therefore, an application was developed with OCR-based automation for inputting ID card information. The method used for OCR is determined by testing the accuracy of Pytesseract and Template Matching in condition using a smartphone camera with dark, bright, and very bright lighting, and using a laptop camera. The average of the accuracy of the four conditions obtained by Pytesseract is 98.33%, while the average obtained by Template Matching is 67.33%. Based on these results, the OCR system developed using Pytesseract.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emotion Classification in Indonesian Language: A CNN Approach with Hyperband Tuning 印尼语情感分类:一种带超频带调谐的CNN方法
Pub Date : 2023-10-01 DOI: 10.24002/jbi.v14i02.7558
Muhammad Yeza Baihaqi, Edmun Halawa, Riri Asyahira Sariati Syah, Anniza Nurrahma, Wilbert Wijaya
In today's world, there is a high demand for accurate techniques to classify emotions in various fields. This study proposed utilizing a Convolutional Neural Network (CNN) optimized with a Hyperband Tuner (HT) to perform the Emotion Classification task in the Indonesian language effectively. Various feature extraction techniques experiments were conducted to explore the best combinations of feature extraction and CNN for the data set, including CountVectorizer (CV), TF-IDF, and Keras Tokenizer (KT). Last, the proposed methodology was evaluated and compared to the stateof-the-art techniques, including K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), and Boosting SVM. The experimental results revealed that the proposed method in this research outperforms the existing technique as evidenced by the accuracy, precision, recall, and F1-score metrics, which respectively reached 71.5655%, 71.5483%, 71.5655%, and 71.0041%.
当今世界,在各个领域都对准确的情绪分类技术有很高的需求。本研究提出利用超带调谐器(Hyperband Tuner, HT)优化的卷积神经网络(Convolutional Neural Network, CNN)来有效执行印尼语的情绪分类任务。为了探索数据集特征提取和CNN的最佳组合,我们进行了各种特征提取技术实验,包括CountVectorizer (CV)、TF-IDF和Keras Tokenizer (KT)。最后,对所提出的方法进行了评估,并与最先进的技术进行了比较,包括k -近邻(KNN)、决策树(DT)、朴素贝叶斯(NB)和Boosting SVM。实验结果表明,本文方法在准确率、精密度、召回率和f1评分指标上均优于现有方法,分别达到71.5655%、71.5483%、71.5655%和71.0041%。
{"title":"Emotion Classification in Indonesian Language: A CNN Approach with Hyperband Tuning","authors":"Muhammad Yeza Baihaqi, Edmun Halawa, Riri Asyahira Sariati Syah, Anniza Nurrahma, Wilbert Wijaya","doi":"10.24002/jbi.v14i02.7558","DOIUrl":"https://doi.org/10.24002/jbi.v14i02.7558","url":null,"abstract":"In today's world, there is a high demand for accurate techniques to classify emotions in various fields. This study proposed utilizing a Convolutional Neural Network (CNN) optimized with a Hyperband Tuner (HT) to perform the Emotion Classification task in the Indonesian language effectively. Various feature extraction techniques experiments were conducted to explore the best combinations of feature extraction and CNN for the data set, including CountVectorizer (CV), TF-IDF, and Keras Tokenizer (KT). Last, the proposed methodology was evaluated and compared to the stateof-the-art techniques, including K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), and Boosting SVM. The experimental results revealed that the proposed method in this research outperforms the existing technique as evidenced by the accuracy, precision, recall, and F1-score metrics, which respectively reached 71.5655%, 71.5483%, 71.5655%, and 71.0041%.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136054797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moving Average untuk Prediksi Harga Saham dengan Linear Regression 利用线性回归预测股价的移动平均数
Pub Date : 2023-10-01 DOI: 10.24002/jbi.v14i02.7446
Luis Alpianto, Aditiya Hermawan, None Junaedi
Stocks as investment instruments in the capital market can provide benefits in capital gains but also have the risk of capital loss. Analysis and forecasting methods are needed to support investors. To achieve this, historical data and moving averages are used to reduce short-term random fluctuations in stock prices, and a linear regression algorithm to obtain accurate results by reducing the error rate and Mean Squared Error (MSE) value. The evaluation results show good accuracy with a strong correlation and a low Mean Absolute Percent Error (MAPE) value. In addition, testing on historical data is carried out to test the model and generate significant profits based on predictions from the model. According to the findings derived from the assessment, predicting stocks using the moving average and linear regression methods can help investors gain profits and reduce risk.
股票作为资本市场上的投资工具,既可以获得资本收益,也有资本损失的风险。需要分析和预测方法来支持投资者。为了实现这一点,我们使用历史数据和移动平均线来减少股票价格的短期随机波动,并使用线性回归算法来减少错误率和均方误差(MSE)值,从而获得准确的结果。评价结果表明,该方法具有较强的相关性和较低的平均绝对百分比误差(MAPE)。此外,对历史数据进行测试,以测试模型,并根据模型的预测产生可观的利润。根据评估的结果,使用移动平均线和线性回归方法预测股票可以帮助投资者获得利润和降低风险。
{"title":"Moving Average untuk Prediksi Harga Saham dengan Linear Regression","authors":"Luis Alpianto, Aditiya Hermawan, None Junaedi","doi":"10.24002/jbi.v14i02.7446","DOIUrl":"https://doi.org/10.24002/jbi.v14i02.7446","url":null,"abstract":"Stocks as investment instruments in the capital market can provide benefits in capital gains but also have the risk of capital loss. Analysis and forecasting methods are needed to support investors. To achieve this, historical data and moving averages are used to reduce short-term random fluctuations in stock prices, and a linear regression algorithm to obtain accurate results by reducing the error rate and Mean Squared Error (MSE) value. The evaluation results show good accuracy with a strong correlation and a low Mean Absolute Percent Error (MAPE) value. In addition, testing on historical data is carried out to test the model and generate significant profits based on predictions from the model. According to the findings derived from the assessment, predicting stocks using the moving average and linear regression methods can help investors gain profits and reduce risk.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manajemen Risiko Keamanan Simbada Menggunakan Metode NIST SP 800-30 Revisi 1 dan Kontrol ISO/IEC 27001:2013 Simbada安全风险管理采用NIST SP 800-30修订1和ISO/IEC 27001:24 13控制
Pub Date : 2023-04-01 DOI: 10.24002/jbi.v14i01.7043
None Sindi Aprianti, None Renny Puspita Sari, None Ibnur Rusi
Dengan ini dilakukannya manajemen risiko menggunakan metode NIST SP 800-30 Revisi 1 dengan tujuan untuk melakukan penilaian risiko atas pengelolaan SIMBADA dan memberikan rekomendasi mitigasi berdasarkan Kontrol ISO/IEC 27001:2013 sehingga dapat menjadi acuan untuk minimalisir risiko yang mungkin terjadi. Hasilnya SIMBADA memiliki 20 daftar risiko yang berada pada level sangat tinggi, tinggi, sedang, dan rendah yang akan diberikan rekomendasi kontrol untuk penerapan keamanan sistem informasi. Terdapat 20 daftar ancaman risiko dan 54 rekomendasi mitigasi yang mengacu pada Kontrol ISO/IEC 27001:2013 dalam 11 klausul, 21 kontrol objektif, dan 39 kontrol keamanan yang dapat digunakan.Kata Kunci: manajemen risiko; keamanan informasi; NIST SP 800-30 Revisi 1; Kontrol ISO/IEC 27001:2013.
在此,风险管理人员使用NIST SP - 800-30修订1的方法,对SIMBADA进行风险评估,并根据ISO/IEC 27001:24 013提供建议,以便将可能发生的风险最小化。结果,SIMBADA拥有20个高、高、中、低级别的风险列表,这些风险将被建议控制信息系统的安全应用。在11个条款、21个客观控制和39个可使用的安全控制中,有20个风险威胁列表和54个关于ISO/IEC 27001:20 013的缓和建议。关键词:风险管理;信息安全;第SP 800-30次修改1;ISO/IEC控制27001:2013。
{"title":"Manajemen Risiko Keamanan Simbada Menggunakan Metode NIST SP 800-30 Revisi 1 dan Kontrol ISO/IEC 27001:2013","authors":"None Sindi Aprianti, None Renny Puspita Sari, None Ibnur Rusi","doi":"10.24002/jbi.v14i01.7043","DOIUrl":"https://doi.org/10.24002/jbi.v14i01.7043","url":null,"abstract":"Dengan ini dilakukannya manajemen risiko menggunakan metode NIST SP 800-30 Revisi 1 dengan tujuan untuk melakukan penilaian risiko atas pengelolaan SIMBADA dan memberikan rekomendasi mitigasi berdasarkan Kontrol ISO/IEC 27001:2013 sehingga dapat menjadi acuan untuk minimalisir risiko yang mungkin terjadi. Hasilnya SIMBADA memiliki 20 daftar risiko yang berada pada level sangat tinggi, tinggi, sedang, dan rendah yang akan diberikan rekomendasi kontrol untuk penerapan keamanan sistem informasi. Terdapat 20 daftar ancaman risiko dan 54 rekomendasi mitigasi yang mengacu pada Kontrol ISO/IEC 27001:2013 dalam 11 klausul, 21 kontrol objektif, dan 39 kontrol keamanan yang dapat digunakan.Kata Kunci: manajemen risiko; keamanan informasi; NIST SP 800-30 Revisi 1; Kontrol ISO/IEC 27001:2013.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135772920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Jurnal Buana Informatika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1