Legal Transition Sequence Recognition of a Bounded Petri Net Using a Gate Recurrent Unit

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Big Data Pub Date : 2023-09-27 DOI:10.1109/TBDATA.2023.3319252
Qingtian Zeng;Shuai Guo;Rui Cao;Ziqi Zhao;Hua Duan
{"title":"Legal Transition Sequence Recognition of a Bounded Petri Net Using a Gate Recurrent Unit","authors":"Qingtian Zeng;Shuai Guo;Rui Cao;Ziqi Zhao;Hua Duan","doi":"10.1109/TBDATA.2023.3319252","DOIUrl":null,"url":null,"abstract":"The Gate Recurrent Unit (GRU) has a large blank in the application of legal transition sequences for bounded Petri nets. A GRU-based method is proposed for the recognition of bounded Petri net legal transition sequences. First, in a Petri net, legal and non-legal transition sequences are generated according to a certain noise ratio. Then, the legal and non-legal transition sequences are inputted into GRU to recognize the legal transition sequences by encoding the maximum variation sequence length with a uniform length. The proposed method is validated with different Petri nets at different noise ratios and compared with seven widely-known baselines. The results show that the proposed method achieves excellent recognition accuracy and robustness in most situations. Solving the problem that the existing methods cannot recognize the legal transition sequences of Petri nets in real time.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 1","pages":"66-76"},"PeriodicalIF":7.5000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10265138/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Gate Recurrent Unit (GRU) has a large blank in the application of legal transition sequences for bounded Petri nets. A GRU-based method is proposed for the recognition of bounded Petri net legal transition sequences. First, in a Petri net, legal and non-legal transition sequences are generated according to a certain noise ratio. Then, the legal and non-legal transition sequences are inputted into GRU to recognize the legal transition sequences by encoding the maximum variation sequence length with a uniform length. The proposed method is validated with different Petri nets at different noise ratios and compared with seven widely-known baselines. The results show that the proposed method achieves excellent recognition accuracy and robustness in most situations. Solving the problem that the existing methods cannot recognize the legal transition sequences of Petri nets in real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用门递归单元识别有界 Petri 网的合法转换序列
门递归单元(GRU)在有界 Petri 网的合法转换序列应用方面有很大的空白。本文提出了一种基于 GRU 的有界 Petri 网合法转换序列识别方法。首先,在 Petri 网中,按照一定的噪声比生成合法过渡序列和非合法过渡序列。然后,将合法和非法过渡序列输入 GRU,通过将最大变化序列长度编码为统一长度来识别合法过渡序列。我们利用不同噪声比的 Petri 网对所提出的方法进行了验证,并与七种广为人知的基线方法进行了比较。结果表明,所提出的方法在大多数情况下都能达到出色的识别准确率和鲁棒性。解决了现有方法无法实时识别 Petri 网合法转换序列的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
期刊最新文献
Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems Reliable Data Augmented Contrastive Learning for Sequential Recommendation Denoised Graph Collaborative Filtering via Neighborhood Similarity and Dynamic Thresholding Higher-Order Smoothness Enhanced Graph Collaborative Filtering AKGNN: Attribute Knowledge Graph Neural Networks Recommendation for Corporate Volunteer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1