{"title":"Reliable Data Augmented Contrastive Learning for Sequential Recommendation","authors":"Mankun Zhao;Aitong Sun;Jian Yu;Xuewei Li;Dongxiao He;Ruiguo Yu;Mei Yu","doi":"10.1109/TBDATA.2024.3453752","DOIUrl":null,"url":null,"abstract":"Sequential recommendation aims to capture users’ dynamic preferences. Due to the limited information in the sequence and the uncertain user behavior, data sparsity has always been a key problem. Although data augmentation methods can alleviate this issue, unreliable data can affect the performance of such models. To solve the above problems, we propose a new framework, namely \n<bold>R</b>\neliable \n<bold>D</b>\nata Augmented \n<bold>C</b>\nontrastive Learning \n<bold>Rec</b>\nommender (RDCRec). Specifically, in order to generate more high-quality reliable items for data augmentation, we design a multi-attributes oriented sequence generator. It moves auxiliary information from the input layer to the attention layer for learning a better attention distribution. Then, we replace a percentage of items in the original sequence with reliable items generated by the generator as the augmented sequence, for creating a high-quality view for contrastive learning. In this way, RDCRec can extract more meaningful user patterns by using the self-supervised signals of the reliable items, thereby improving recommendation performance. Finally, we train a discriminator to identify unreplaced items in the augmented sequence thus we can update item embeddings selectively in order to increase the exposure of more reliable items and improve the accuracy of recommendation results. The discriminator, as an auxiliary model, is jointly trained with the generative task and the contrastive learning task. Large experiments on four popular datasets that are commonly used demonstrate the effectiveness of our new method for sequential recommendation.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 6","pages":"694-705"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10683789/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Sequential recommendation aims to capture users’ dynamic preferences. Due to the limited information in the sequence and the uncertain user behavior, data sparsity has always been a key problem. Although data augmentation methods can alleviate this issue, unreliable data can affect the performance of such models. To solve the above problems, we propose a new framework, namely
R
eliable
D
ata Augmented
C
ontrastive Learning
Rec
ommender (RDCRec). Specifically, in order to generate more high-quality reliable items for data augmentation, we design a multi-attributes oriented sequence generator. It moves auxiliary information from the input layer to the attention layer for learning a better attention distribution. Then, we replace a percentage of items in the original sequence with reliable items generated by the generator as the augmented sequence, for creating a high-quality view for contrastive learning. In this way, RDCRec can extract more meaningful user patterns by using the self-supervised signals of the reliable items, thereby improving recommendation performance. Finally, we train a discriminator to identify unreplaced items in the augmented sequence thus we can update item embeddings selectively in order to increase the exposure of more reliable items and improve the accuracy of recommendation results. The discriminator, as an auxiliary model, is jointly trained with the generative task and the contrastive learning task. Large experiments on four popular datasets that are commonly used demonstrate the effectiveness of our new method for sequential recommendation.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.