Wind Power Forecasting in a Semi-Arid Region Based on Machine Learning Error Correction

IF 1.3 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Wind and Structures Pub Date : 2023-10-31 DOI:10.3390/wind3040028
Mirella Lima Saraiva Araujo, Yasmin Kaore Lago Kitagawa, Arthur Lúcide Cotta Weyll, Francisco José Lopes de Lima, Thalyta Soares dos Santos, William Duarte Jacondino, Allan Rodrigues Silva, Márcio de Carvalho Filho, Willian Ramires Pires Bezerra, José Bione de Melo Filho, Alex Álisson Bandeira Santos, Diogo Nunes da Silva Ramos, Davidson Martins Moreira
{"title":"Wind Power Forecasting in a Semi-Arid Region Based on Machine Learning Error Correction","authors":"Mirella Lima Saraiva Araujo, Yasmin Kaore Lago Kitagawa, Arthur Lúcide Cotta Weyll, Francisco José Lopes de Lima, Thalyta Soares dos Santos, William Duarte Jacondino, Allan Rodrigues Silva, Márcio de Carvalho Filho, Willian Ramires Pires Bezerra, José Bione de Melo Filho, Alex Álisson Bandeira Santos, Diogo Nunes da Silva Ramos, Davidson Martins Moreira","doi":"10.3390/wind3040028","DOIUrl":null,"url":null,"abstract":"Wind power forecasting is pivotal in promoting a stable and sustainable grid operation by estimating future power outputs from past meteorological and turbine data. The inherent unpredictability in wind patterns poses substantial challenges in synchronizing supply with demand, with inaccuracies potentially destabilizing the grid and potentially causing energy shortages or excesses. This study develops a data-driven approach to forecast wind power from 30 min to 12 h ahead using historical wind power data collected by the Supervisory Control and Data Acquisition (SCADA) system from one wind turbine, the Enercon/E92 2350 kW model, installed at Casa Nova, Bahia, Brazil. Those data were measured from January 2020 to April 2021. Time orientation was embedded using sine/cosine or cyclic encoding, deriving 16 normalized features that encapsulate crucial daily and seasonal trends. The research explores two distinct strategies: error prediction and error correction, both employing a sequential model where initial forecasts via k-Nearest Neighbors (KNN) are rectified by the Extra Trees Regressor. Their primary divergence is the second model’s target variable. Evaluations revealed both strategies outperforming the standalone KNN, with error correction excelling in short-term predictions and error prediction showing potential for extended forecasts. This exploration underscores the imperative importance of methodology selection in wind power forecasting.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"66 11","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wind3040028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wind power forecasting is pivotal in promoting a stable and sustainable grid operation by estimating future power outputs from past meteorological and turbine data. The inherent unpredictability in wind patterns poses substantial challenges in synchronizing supply with demand, with inaccuracies potentially destabilizing the grid and potentially causing energy shortages or excesses. This study develops a data-driven approach to forecast wind power from 30 min to 12 h ahead using historical wind power data collected by the Supervisory Control and Data Acquisition (SCADA) system from one wind turbine, the Enercon/E92 2350 kW model, installed at Casa Nova, Bahia, Brazil. Those data were measured from January 2020 to April 2021. Time orientation was embedded using sine/cosine or cyclic encoding, deriving 16 normalized features that encapsulate crucial daily and seasonal trends. The research explores two distinct strategies: error prediction and error correction, both employing a sequential model where initial forecasts via k-Nearest Neighbors (KNN) are rectified by the Extra Trees Regressor. Their primary divergence is the second model’s target variable. Evaluations revealed both strategies outperforming the standalone KNN, with error correction excelling in short-term predictions and error prediction showing potential for extended forecasts. This exploration underscores the imperative importance of methodology selection in wind power forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习误差校正的半干旱区风电预测
风力发电预测是促进电网稳定和可持续运行的关键,通过过去的气象和涡轮机数据估计未来的电力输出。风力模式固有的不可预测性给供需同步带来了巨大挑战,不准确可能会破坏电网的稳定,并可能导致能源短缺或过剩。本研究开发了一种数据驱动的方法,利用监控和数据采集(SCADA)系统从安装在巴西巴伊亚Casa Nova的一台风力涡轮机(Enercon/E92 2350 kW型号)收集的历史风力数据,预测未来30分钟至12小时的风力。这些数据是在2020年1月至2021年4月期间测量的。时间方向使用正弦/余弦或循环编码嵌入,得到16个标准化特征,封装了关键的每日和季节性趋势。该研究探索了两种不同的策略:误差预测和误差校正,两者都采用序列模型,其中通过k-最近邻(KNN)进行的初始预测由额外树回归器修正。他们的主要分歧是第二个模型的目标变量。评估显示,这两种策略都优于独立的KNN,在短期预测和错误预测方面的纠错表现出色,显示出扩展预测的潜力。这一探索强调了风电预测方法选择的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wind and Structures
Wind and Structures 工程技术-工程:土木
CiteScore
2.70
自引率
18.80%
发文量
0
审稿时长
>12 weeks
期刊介绍: The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted. The main theme of the Journal is the wind effects on structures. Areas covered by the journal include: Wind loads and structural response, Bluff-body aerodynamics, Computational method, Wind tunnel modeling, Local wind environment, Codes and regulations, Wind effects on large scale structures.
期刊最新文献
Challenges and Perspectives of Wind Energy Technology Responses of a Modular Floating Wind TLP of MarsVAWT Supporting a 10 MW Vertical Axis Wind Turbine Wind Power Forecasting in a Semi-Arid Region Based on Machine Learning Error Correction Scaling Challenges for Conical Plain Bearings as Wind Turbine Main Bearings Numerical Modeling and Application of Horizontal-Axis Wind Turbine Arrays in Large Wind Farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1