Hayder Almosa, Yahya J. Harbi, Mohammed Al-Dulaimi, Alister Burr
{"title":"Performance Analysis of DoA Estimation for FDD Cell Free Systems Based on Compressive Sensing Technique","authors":"Hayder Almosa, Yahya J. Harbi, Mohammed Al-Dulaimi, Alister Burr","doi":"10.12720/jcm.18.10.658-664","DOIUrl":null,"url":null,"abstract":"The concept of cell free (CF) massive MIMO systems is a prospective fifth generation communication technology that effort with base stations for the privilege of user-centric coverage. Most studies on the CF massive MIMO system in the past imply that systems that use time division duplexing (TDD), even despite the systems using frequency division duplex (FDD) predominate in today’s wireless communications. When the number of antennas increases in FDD systems, channel state information (CSI) collection and feedback overhead become major issues. In order to mitigate these issues, we make use of the condition that the so-called uplink and downlink multipath components are comparable. Base station takes use of the angle reciprocity may immediately obtain information on channel parameters from the uplink training signal. In this paper, for CF massive MIMO system based on FDD, we provide compressive sensing (CS) of directions of arrival (DoAs) estimation approach of access point cooperation based on the channel parameters. The suggested estimation approach outperforms the established subspace-based technique, according to simulation findings. Additionally, we showed that the results of our compressive sensing estimator against the conventional estimation method. The former demonstrates way far better outcome and performance accordingly than the latter.","PeriodicalId":53518,"journal":{"name":"Journal of Communications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jcm.18.10.658-664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of cell free (CF) massive MIMO systems is a prospective fifth generation communication technology that effort with base stations for the privilege of user-centric coverage. Most studies on the CF massive MIMO system in the past imply that systems that use time division duplexing (TDD), even despite the systems using frequency division duplex (FDD) predominate in today’s wireless communications. When the number of antennas increases in FDD systems, channel state information (CSI) collection and feedback overhead become major issues. In order to mitigate these issues, we make use of the condition that the so-called uplink and downlink multipath components are comparable. Base station takes use of the angle reciprocity may immediately obtain information on channel parameters from the uplink training signal. In this paper, for CF massive MIMO system based on FDD, we provide compressive sensing (CS) of directions of arrival (DoAs) estimation approach of access point cooperation based on the channel parameters. The suggested estimation approach outperforms the established subspace-based technique, according to simulation findings. Additionally, we showed that the results of our compressive sensing estimator against the conventional estimation method. The former demonstrates way far better outcome and performance accordingly than the latter.
期刊介绍:
JCM is a scholarly peer-reviewed international scientific journal published monthly, focusing on theories, systems, methods, algorithms and applications in communications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on communications. All papers will be blind reviewed and accepted papers will be published monthly which is available online (open access) and in printed version.