III–V semiconductor devices grown by metalorganic chemical vapor deposition—The development of the Swiss Army Knife for semiconductor epitaxial growth

Russell D. Dupuis
{"title":"III–V semiconductor devices grown by metalorganic chemical vapor deposition—The development of the Swiss Army Knife for semiconductor epitaxial growth","authors":"Russell D. Dupuis","doi":"10.1116/6.0003062","DOIUrl":null,"url":null,"abstract":"Metalorganic chemical vapor deposition (MOCVD) epitaxial materials technology for the growth of compound semiconductors has been developed over the past 60-plus years to become the dominant process for both research and production of light-emitting devices as well as many other electronic and optoelectronic devices. Today, MOCVD has become the “Swiss Army Knife” of semiconductor epitaxial growth, covering a wide variety of compound semiconductors and device applications. Because of the flexibility and control offered by this process and the material quality produced by MOCVD, many important III–V semiconductor devices have become commercially viable. This paper attempts to provide a personal view of the early development of MOCVD and some brief historical discussion of this important and highly versatile materials technology for the growth of high-quality devices employing ultrathin layers and heterojunctions of III–V compound semiconductors, e.g., quantum-well lasers, light-emitting diodes, heterojunction solar cells, transistors, and photonic integrated circuits.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"2009 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metalorganic chemical vapor deposition (MOCVD) epitaxial materials technology for the growth of compound semiconductors has been developed over the past 60-plus years to become the dominant process for both research and production of light-emitting devices as well as many other electronic and optoelectronic devices. Today, MOCVD has become the “Swiss Army Knife” of semiconductor epitaxial growth, covering a wide variety of compound semiconductors and device applications. Because of the flexibility and control offered by this process and the material quality produced by MOCVD, many important III–V semiconductor devices have become commercially viable. This paper attempts to provide a personal view of the early development of MOCVD and some brief historical discussion of this important and highly versatile materials technology for the growth of high-quality devices employing ultrathin layers and heterojunctions of III–V compound semiconductors, e.g., quantum-well lasers, light-emitting diodes, heterojunction solar cells, transistors, and photonic integrated circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属有机化学气相沉积生长的半导体器件——半导体外延生长用瑞士军刀的发展
用于化合物半导体生长的金属有机化学气相沉积(MOCVD)外延材料技术已经发展了60多年,成为发光器件以及许多其他电子和光电子器件的研究和生产的主导工艺。如今,MOCVD已成为半导体外延生长的“瑞士军刀”,覆盖了多种化合物半导体和器件应用。由于该工艺提供的灵活性和控制以及MOCVD生产的材料质量,许多重要的III-V半导体器件已经具有商业可行性。本文试图对MOCVD的早期发展提供个人的观点,并对这一重要且高度通用的材料技术进行简要的历史讨论,以用于使用III-V化合物半导体的超薄层和异质结的高质量器件的生长,例如量子阱激光器,发光二极管,异质结太阳能电池,晶体管和光子集成电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interfacial reactivity in the Co/CuO samples as investigated by x-ray photoelectron spectroscopy Modification of discharge sequences to control the random dispersion of flake particles during wafer etching Effect of atomic-scale microstructures on TiZrV non-evaporable getter film activation E-mode AlGaN/GaN HEMTs using p-NiO gates Review on remote phonon scattering in transistors with metal-oxide-semiconductor structures adopting high-k gate dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1