ENSO Disrupts Boreal Winter CRE Feedback

IF 4.8 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Climate Pub Date : 2023-11-03 DOI:10.1175/jcli-d-23-0282.1
Daeho Jin, Ryan J. Kramer, Lazaros Oreopoulos, Dongmin Lee
{"title":"ENSO Disrupts Boreal Winter CRE Feedback","authors":"Daeho Jin, Ryan J. Kramer, Lazaros Oreopoulos, Dongmin Lee","doi":"10.1175/jcli-d-23-0282.1","DOIUrl":null,"url":null,"abstract":"Abstract Twenty years of satellite-based cloud and radiation observations allow us to examine the observed cloud radiative effect (CRE) feedback (i.e., CRE change per unit change in global mean surface temperature). By employing a decomposition method to separate the contribution of “internal changes” and “relative-frequency-of-occurrence (RFO) changes” of distinct cloud regime (CR) groups, notable seasonal contrasts of CRE feedback characteristics emerge. Boreal winter CRE feedback is dominated by the positive shortwave CRE (SWCRE) feedback of oceanic low-thick clouds, due to their decreasing RFO as temperature rises. This signal is most likely due to El Niño-Southern Oscillation (ENSO) activity. When ENSO signals are excluded, boreal winter CRE feedback becomes qualitatively similar to the boreal summer feedback, where several CR groups contribute to the total CRE feedback more evenly. Most CR groups’ CRE feedbacks largely come from changing RFO: e.g., the predominant transition from oceanic cumulus to broken clouds and more occurrences of higher convective clouds with warming temperature. At the same time, low-thick and broken clouds experience optical thinning and decreasing cloud fraction, and these features are more prominent in boreal summer than winter. Overall, the seasonally asymmetric patterns of CRE feedback, primarily due to ENSO, introduce complexity in assessments of CRE feedback.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"37 12","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0282.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Twenty years of satellite-based cloud and radiation observations allow us to examine the observed cloud radiative effect (CRE) feedback (i.e., CRE change per unit change in global mean surface temperature). By employing a decomposition method to separate the contribution of “internal changes” and “relative-frequency-of-occurrence (RFO) changes” of distinct cloud regime (CR) groups, notable seasonal contrasts of CRE feedback characteristics emerge. Boreal winter CRE feedback is dominated by the positive shortwave CRE (SWCRE) feedback of oceanic low-thick clouds, due to their decreasing RFO as temperature rises. This signal is most likely due to El Niño-Southern Oscillation (ENSO) activity. When ENSO signals are excluded, boreal winter CRE feedback becomes qualitatively similar to the boreal summer feedback, where several CR groups contribute to the total CRE feedback more evenly. Most CR groups’ CRE feedbacks largely come from changing RFO: e.g., the predominant transition from oceanic cumulus to broken clouds and more occurrences of higher convective clouds with warming temperature. At the same time, low-thick and broken clouds experience optical thinning and decreasing cloud fraction, and these features are more prominent in boreal summer than winter. Overall, the seasonally asymmetric patterns of CRE feedback, primarily due to ENSO, introduce complexity in assessments of CRE feedback.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ENSO干扰北方冬季CRE反馈
二十年的卫星云和辐射观测使我们能够检验观测到的云辐射效应(CRE)反馈(即全球平均地表温度每单位变化的CRE变化)。通过采用分解方法分离不同云态(CR)组的“内部变化”和“相对出现频率变化”的贡献,出现了显著的CRE反馈特征的季节差异。寒带冬季CRE反馈以海洋低厚云的短波正反馈(SWCRE)为主,其RFO随温度升高而减小。这个信号很可能是由于厄尔尼诺Niño-Southern振荡(ENSO)活动。当排除ENSO信号时,北方冬季的CRE反馈在质量上与北方夏季的CRE反馈相似,其中几个CR组对总CRE反馈的贡献更均匀。大多数CR群的CRE反馈主要来自于RFO的变化:例如,从海洋积云到破碎云的主要转变以及温度变暖的高对流云的更多出现。与此同时,低厚云和破碎云的光学变薄和云分减少,这些特征在北方夏季比冬季更为突出。总的来说,主要由ENSO引起的CRE反馈的季节性不对称模式增加了CRE反馈评估的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Climate
Journal of Climate 地学-气象与大气科学
CiteScore
9.30
自引率
14.30%
发文量
490
审稿时长
7.5 months
期刊介绍: The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.
期刊最新文献
De Novo Design of Peptide Binders to Conformationally Diverse Targets with Contrastive Language Modeling. Future changes in the vertical structure of severe convective storm environments over the U.S. central Great Plains Impacts of Local and Remote SST Warming on Summer Circulation Changes in the Western North Pacific Future Changes of Extreme Precipitation and Related Atmospheric Conditions in East Asia under Global Warming Projected in Large Ensemble Climate Prediction Data PNA nonlinearity and ENSO transition asymmetry weaken PMM before La Niña onset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1