首页 > 最新文献

Journal of Climate最新文献

英文 中文
De Novo Design of Peptide Binders to Conformationally Diverse Targets with Contrastive Language Modeling. 利用对比语言建模从新设计多肽与形态各异靶标的结合剂
2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-22 DOI: 10.1101/2023.06.26.546591
Suhaas Bhat, Kalyan Palepu, Lauren Hong, Joey Mao, Tianzheng Ye, Rema Iyer, Lin Zhao, Tianlai Chen, Sophia Vincoff, Rio Watson, Tian Wang, Divya Srijay, Venkata Srikar Kavirayuni, Kseniia Kholina, Shrey Goel, Pranay Vure, Aniruddha J Desphande, Scott H Soderling, Matthew P DeLisa, Pranam Chatterjee

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been trained to design binding proteins via three-dimensional structures of target proteins, but as a result, struggle to design binders to disordered or conformationally unstable targets. In this work, we provide a generalizable algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model, and subsequently screen these novel linear sequences for target-selective interaction activity via a CLIP-based contrastive learning architecture. By integrating these generative and discriminative steps, we create a Peptide Prioritization via CLIP (PepPrCLIP) pipeline and validate highly-ranked, target-specific peptides experimentally, both as inhibitory peptides and as fusions to E3 ubiquitin ligase domains, demonstrating functionally potent binding and degradation of conformationally diverse protein targets in vitro. Overall, our design strategy provides a modular toolkit for designing short binding linear peptides to any target protein without the reliance on stable and ordered tertiary structure, enabling generation of programmable modulators to undruggable and disordered proteins such as transcription factors and fusion oncoproteins.

为不可药用蛋白质设计结合蛋白是药物发现中的一项艰巨挑战,需要创新方法来克服缺乏推定结合位点的问题。最近,人们已经训练了生成模型,通过目标蛋白质的三维结构来设计结合蛋白,但结果却难以设计出无序或构象不稳定目标的结合蛋白。在这项工作中,我们提供了一个可通用的算法框架,只需目标蛋白质的氨基酸序列,就能设计出短的、与目标结合的线性肽。为此,我们提出了通过对 ESM-2 蛋白语言模型的肽潜空间进行高斯扰动来生成自然候选肽的方法,随后通过基于 CLIP 的对比学习架构来筛选这些新颖的线性序列,以确定其是否具有靶向选择性相互作用活性。通过整合这些生成和鉴别步骤,我们创建了一个通过 CLIP(PepPrCLIP)进行肽潮筛选(Pep tide Pr ioritization via CLIP)的管道,并在实验中验证了排名靠前的靶标特异性肽段,这些肽段既可以作为抑制肽段,也可以作为与 E3 泛素连接酶结构域融合的肽段,在体外对构象各异的蛋白质靶标进行了功能强大的结合和降解。总之,我们的设计策略提供了一个模块化工具包,可用于设计与任何靶蛋白结合的短线性肽,而无需依赖稳定有序的三级结构,这样就能生成可编程的调节剂,调节转录因子和融合肿瘤蛋白等不可药用和无序的蛋白。
{"title":"<i>De Novo</i> Design of Peptide Binders to Conformationally Diverse Targets with Contrastive Language Modeling.","authors":"Suhaas Bhat, Kalyan Palepu, Lauren Hong, Joey Mao, Tianzheng Ye, Rema Iyer, Lin Zhao, Tianlai Chen, Sophia Vincoff, Rio Watson, Tian Wang, Divya Srijay, Venkata Srikar Kavirayuni, Kseniia Kholina, Shrey Goel, Pranay Vure, Aniruddha J Desphande, Scott H Soderling, Matthew P DeLisa, Pranam Chatterjee","doi":"10.1101/2023.06.26.546591","DOIUrl":"10.1101/2023.06.26.546591","url":null,"abstract":"<p><p>Designing binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been trained to design binding proteins via three-dimensional structures of target proteins, but as a result, struggle to design binders to disordered or conformationally unstable targets. In this work, we provide a generalizable algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model, and subsequently screen these novel linear sequences for target-selective interaction activity via a CLIP-based contrastive learning architecture. By integrating these generative and discriminative steps, we create a <b>Pep</b>tide <b>Pr</b>ioritization via <b>CLIP</b> (<b>PepPrCLIP</b>) pipeline and validate highly-ranked, target-specific peptides experimentally, both as inhibitory peptides and as fusions to E3 ubiquitin ligase domains, demonstrating functionally potent binding and degradation of conformationally diverse protein targets <i>in vitro</i>. Overall, our design strategy provides a modular toolkit for designing short binding linear peptides to any target protein without the reliance on stable and ordered tertiary structure, enabling generation of programmable modulators to undruggable and disordered proteins such as transcription factors and fusion oncoproteins.</p>","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86671535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future changes in the vertical structure of severe convective storm environments over the U.S. central Great Plains 美国中部大平原强对流风暴环境垂直结构的未来变化
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-09 DOI: 10.1175/jcli-d-23-0141.1
Isaac Davis, Funing Li, Daniel R. Chavas
Abstract The effect of warming on severe convective storm potential is commonly explained in terms of changes in vertically-integrated (“bulk”) environmental parameters, such as CAPE and 0–6-km shear. However, such events are known to depend on details of the vertical structure of the thermodynamic and kinematic environment that can change independently of these bulk parameters. This work examines how warming may affect the complete vertical structure of these environments for fixed ranges of values of high CAPE and bulk shear, using data over the central Great Plains from two high-performing climate models (CNRM and MPI). To first order, projected changes in the vertical sounding structure is consistent between the two models: the environment warms approximately uniformly with height at constant relative humidity and the shear profile remains relatively constant. The boundary layer becomes slightly drier (−2–6% relative humidity) while the free troposphere becomes slightly moister (+1–3%), with a slight increase in moist static energy deficit aloft with stronger magnitude in CNRM. CNRM indicates enhanced low-level shear and storm-relative helicity associated with stronger hodograph curvature in the lowest 2 km, whereas MPI shows near zero change. Both models strongly underestimate shear below 1 km compared to ERA5, indicating large uncertainty in projecting subtle changes in the low-level flow structure in climate models. Evaluation of the net effect of these modest thermodynamic and kinematic changes on severe convective storm outcomes cannot be ascertained here but could be explored in simulation experiments.
摘要 暖化对强对流风暴潜势的影响通常用垂直整合("总体")环境参数的变化来解释,例如 CAPE 和 0-6 公里切变。然而,众所周知,此类事件取决于热力学和运动学环境垂直结构的细节,而这些细节的变化可能与这些总体参数无关。这项工作利用两个高性能气候模式(CNRM 和 MPI)在大平原中部的数据,研究了在高 CAPE 和体切变的固定值范围内,气候变暖会如何影响这些环境的完整垂直结构。首先,两个模式对垂直探测结构变化的预测是一致的:在相对湿度不变的情况下,环境随着高度的增加而变暖,切变剖面保持相对不变。边界层略微变干(相对湿度-2-6%),而自由对流层略微变湿(+1-3%),高空湿静态能量不足略有增加,在中国气象局模式下幅度更大。CNRM 显示低空切变和风暴相关卷流增强,与最低 2 公里处更强的霍多图曲率有关,而 MPI 显示变化几乎为零。与ERA5相比,两个模式都严重低估了1公里以下的切变,这表明气候模式预测低空气流结构的微妙变化存在很大的不确定性。这里无法确定这些适度的热力学和运动学变化对强对流风暴结果的净影响,但可以在模拟实验中进行探索。
{"title":"Future changes in the vertical structure of severe convective storm environments over the U.S. central Great Plains","authors":"Isaac Davis, Funing Li, Daniel R. Chavas","doi":"10.1175/jcli-d-23-0141.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0141.1","url":null,"abstract":"Abstract The effect of warming on severe convective storm potential is commonly explained in terms of changes in vertically-integrated (“bulk”) environmental parameters, such as CAPE and 0–6-km shear. However, such events are known to depend on details of the vertical structure of the thermodynamic and kinematic environment that can change independently of these bulk parameters. This work examines how warming may affect the complete vertical structure of these environments for fixed ranges of values of high CAPE and bulk shear, using data over the central Great Plains from two high-performing climate models (CNRM and MPI). To first order, projected changes in the vertical sounding structure is consistent between the two models: the environment warms approximately uniformly with height at constant relative humidity and the shear profile remains relatively constant. The boundary layer becomes slightly drier (−2–6% relative humidity) while the free troposphere becomes slightly moister (+1–3%), with a slight increase in moist static energy deficit aloft with stronger magnitude in CNRM. CNRM indicates enhanced low-level shear and storm-relative helicity associated with stronger hodograph curvature in the lowest 2 km, whereas MPI shows near zero change. Both models strongly underestimate shear below 1 km compared to ERA5, indicating large uncertainty in projecting subtle changes in the low-level flow structure in climate models. Evaluation of the net effect of these modest thermodynamic and kinematic changes on severe convective storm outcomes cannot be ascertained here but could be explored in simulation experiments.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"38 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Local and Remote SST Warming on Summer Circulation Changes in the Western North Pacific 本地和远洋海温升高对北太平洋西部夏季环流变化的影响
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-09 DOI: 10.1175/jcli-d-23-0403.1
Chao-An Chen, Huang-Hsiung Hsu, Hsin-Chien Liang, Yu-Luen Chen, Ping-Gin Chiu, Chia-Ying Tu
Abstract This study explores how future SST warming in remote ocean basins may affect the western North Pacific (WNP) wet season climate by applying a high-resolution atmospheric general circulation model to conduct a series of numerical experiments. A marked precipitation and tropical cyclone (TC) activity reduction, as well as enhanced anticyclonic circulation, in the WNP is projected in AMIP experiments forced by SST change in a future warming scenario. The sensitivity experiments reveal that various SST warming phenomena (e.g., in the global SST warming pattern, the tropical ocean belt, the Indian Ocean, tropical Atlantic, the subtropical northeast Pacific) and the increase of greenhouse gas concentration could weaken the precipitation, TC activity, and circulation. By contrast, the SST warming in the WNP and eastern equatorial Pacific have opposite and mixed effects, respectively, and tend to weakly offset the dominant influences of remote ocean warming. These results indicate that the WNP, being the epicenter of the global teleconnection of divergent and rotational flow, is susceptible to the influence of the SST warming in remote ocean basins. The remote forcing as projected in future scenarios would overwhelm the enhancing effect of local SST warming and weaken the circulation, convection, and TC activity in the WNP. These findings further the understanding of how the decreased precipitation and enhanced subtropical high in the WNP may be easily triggered by remote SST warming as revealed in the AMIP-type simulations. How this effect would be affected by air-sea coupling needs further investigation.
摘要 本研究通过应用高分辨率大气环流模式进行一系列数值试验,探讨了未来偏远海洋盆地的 SST 变暖可能会如何影响北太平洋西部的雨季气候。在 AMIP 实验中,预计在未来气候变暖的情况下,由于 SST 的变化,WNP 的降水和热带气旋(TC)活动将明显减少,反气旋环流也将增强。灵敏度实验显示,各种 SST 变暖现象(如全球 SST 变暖模式、热带海洋带、印度洋、热带大西洋、亚热带东北太平洋)和温室气体浓度的增加会削弱降水、TC 活动和环流。相比之下,西北太平洋和赤道东太平洋的 SST 增暖分别产生了相反和混合的影响,并倾向于弱化抵消远洋增暖的主导影响。这些结果表明,作为全球发散流和旋转流远距离联系的中心,大西北太平洋容易受到远洋盆地海温升高的影响。未来情景预测中的遥远强迫将压倒本地 SST 变暖的增强效应,并削弱 WNP 的环流、对流和 TC 活动。这些发现进一步加深了对 AMIP 型模拟所揭示的远程 SST 变暖和容易引发 WNP 降水减少和副热带高压增强的理解。这种效应如何受到海气耦合的影响还需要进一步研究。
{"title":"Impacts of Local and Remote SST Warming on Summer Circulation Changes in the Western North Pacific","authors":"Chao-An Chen, Huang-Hsiung Hsu, Hsin-Chien Liang, Yu-Luen Chen, Ping-Gin Chiu, Chia-Ying Tu","doi":"10.1175/jcli-d-23-0403.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0403.1","url":null,"abstract":"Abstract This study explores how future SST warming in remote ocean basins may affect the western North Pacific (WNP) wet season climate by applying a high-resolution atmospheric general circulation model to conduct a series of numerical experiments. A marked precipitation and tropical cyclone (TC) activity reduction, as well as enhanced anticyclonic circulation, in the WNP is projected in AMIP experiments forced by SST change in a future warming scenario. The sensitivity experiments reveal that various SST warming phenomena (e.g., in the global SST warming pattern, the tropical ocean belt, the Indian Ocean, tropical Atlantic, the subtropical northeast Pacific) and the increase of greenhouse gas concentration could weaken the precipitation, TC activity, and circulation. By contrast, the SST warming in the WNP and eastern equatorial Pacific have opposite and mixed effects, respectively, and tend to weakly offset the dominant influences of remote ocean warming. These results indicate that the WNP, being the epicenter of the global teleconnection of divergent and rotational flow, is susceptible to the influence of the SST warming in remote ocean basins. The remote forcing as projected in future scenarios would overwhelm the enhancing effect of local SST warming and weaken the circulation, convection, and TC activity in the WNP. These findings further the understanding of how the decreased precipitation and enhanced subtropical high in the WNP may be easily triggered by remote SST warming as revealed in the AMIP-type simulations. How this effect would be affected by air-sea coupling needs further investigation.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"26 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future Changes of Extreme Precipitation and Related Atmospheric Conditions in East Asia under Global Warming Projected in Large Ensemble Climate Prediction Data 大型集合气候预测数据预测全球变暖下东亚极端降水及相关大气条件的未来变化
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-04 DOI: 10.1175/jcli-d-22-0924.1
Sicheng He, Tetsuya Takemi
Abstract Extreme precipitation is expected to pose a more severe threat to human society in the future. This work assessed the historical performance and future changes of extreme precipitation and related atmospheric conditions in a large ensemble climate prediction dataset, the database for Policy Decision-making for Future climate change (d4PDF), over East Asia. Compared with the TRMM and ERA5 datasets, the historical climate in d4PDF represents favorably the precipitation characteristics and the atmospheric conditions, although some differences are notable in the moisture, vertical motion, and cloud water fields. The future climate projection indicates that both the frequency and intensity of heavy precipitation events over East Asia increase compared with those in the present climate. However, when comparing the atmospheric conditions in the historical and future climates for the same precipitation intensity range, the future climate indicates smaller relatively humidity, weaker ascent, less cloud water content, and smaller temperature lapse rate, which negatively affect generating extreme precipitation events. The comparison of the precipitation intensity at the same amount of precipitable water between the historical and future climates indicates that extreme precipitation is weaker in the future, because of the more stabilized troposphere in the future. The general increase in extreme precipitation under future climate is primarily due to the enhanced increase in precipitable water in the higher temperature ranges, which counteracts the negative conditions of the stabilized troposphere.
摘要 极端降水预计将在未来对人类社会构成更严重的威胁。这项工作评估了东亚地区大型集合气候预测数据集--未来气候变化决策数据库(d4PDF)中极端降水及相关大气条件的历史表现和未来变化。与 TRMM 和 ERA5 数据集相比,d4PDF 中的历史气候较好地反映了降水特征和大气条件,但在水汽、垂直运动和云水场方面存在明显差异。未来气候预测表明,东亚地区强降水事件的频率和强度都比现在的气候有所增加。然而,在相同降水强度范围内,比较历史气候和未来气候的大气条件,未来气候表明相对湿度较小、上升力较弱、云水含量较少、温度失效率较小,这些都对极端降水事件的产生产生不利影响。通过比较历史气候和未来气候在相同可降水量下的降水强度,可以看出未来极端降水较弱,这是因为未来对流层更加稳定。未来气候下极端降水的普遍增加主要是由于较高温度范围内可降水量的增加,这抵消了对流层稳定的不利条件。
{"title":"Future Changes of Extreme Precipitation and Related Atmospheric Conditions in East Asia under Global Warming Projected in Large Ensemble Climate Prediction Data","authors":"Sicheng He, Tetsuya Takemi","doi":"10.1175/jcli-d-22-0924.1","DOIUrl":"https://doi.org/10.1175/jcli-d-22-0924.1","url":null,"abstract":"Abstract Extreme precipitation is expected to pose a more severe threat to human society in the future. This work assessed the historical performance and future changes of extreme precipitation and related atmospheric conditions in a large ensemble climate prediction dataset, the database for Policy Decision-making for Future climate change (d4PDF), over East Asia. Compared with the TRMM and ERA5 datasets, the historical climate in d4PDF represents favorably the precipitation characteristics and the atmospheric conditions, although some differences are notable in the moisture, vertical motion, and cloud water fields. The future climate projection indicates that both the frequency and intensity of heavy precipitation events over East Asia increase compared with those in the present climate. However, when comparing the atmospheric conditions in the historical and future climates for the same precipitation intensity range, the future climate indicates smaller relatively humidity, weaker ascent, less cloud water content, and smaller temperature lapse rate, which negatively affect generating extreme precipitation events. The comparison of the precipitation intensity at the same amount of precipitable water between the historical and future climates indicates that extreme precipitation is weaker in the future, because of the more stabilized troposphere in the future. The general increase in extreme precipitation under future climate is primarily due to the enhanced increase in precipitable water in the higher temperature ranges, which counteracts the negative conditions of the stabilized troposphere.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PNA nonlinearity and ENSO transition asymmetry weaken PMM before La Niña onset PNA 非线性和厄尔尼诺/南方涛动过渡不对称削弱了拉尼娜现象开始前的 PMM
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-04 DOI: 10.1175/jcli-d-23-0769.1
Xiang Han, Tao Lian, Dake Chen, Ruikun Hu, Ting Liu, Qucheng Chu, Baosheng Li
Abstract The Pacific Meridional Mode (PMM) is one of dominant coupled modes in the northeastern tropical Pacific (NETP), characterized by a strip-like sea surface temperature (SST) anomalies spanning from Baja California to the central equatorial Pacific. While the majority of the El Niño events follow a positive PMM, only a few La Niña events are preceded by a negative PMM. Such an asymmetric activity of PMM before the onset of El Niño-Southern Oscillation (ENSO) was previously attributed to the inherent nonlinear response of the wind-evaporation-SST (WES) feedback to trade winds in NETP. Through data analysis and coupled model experiments, we pointed out that PMM is in fact a highly symmetric phenomenon, and the asymmetry of PMM before ENSO onset thus must be associated with ENSO. On the one hand, the nonlinear response of deep convection over the equator to symmetric ENSO forcing in the central equatorial Pacific permits a stronger Pacific North America (PNA) pattern in El Niño years than in La Niña years. On the other hand, since the majority of La Niña events are preceded by a sharp decay of an El Niño, the warm equatorial SST anomalies associated with the preceding El Niño provides another source to trigger PNA before La Niña onset. The two mechanisms modulate the trade winds and heat fluxes in NETP more heavily before La Niña onset than the El Niño onset, and equally contribute to PMM asymmetry before ENSO onset.
摘要 太平洋经向模式(PMM)是东北热带太平洋(NETP)的主要耦合模式之一,其特点是海面温度(SST)异常呈条状,从下加利福尼亚一直延伸到赤道太平洋中部。大多数厄尔尼诺现象是在正的 PMM 之后发生的,而只有少数拉尼娜现象是在负的 PMM 之前发生的。在厄尔尼诺-南方涛动(ENSO)开始之前,这种不对称的 PMM 活动以前被认为是由于风-蒸发-SST(WES)反馈对 NETP 中信风的固有非线性响应造成的。通过数据分析和耦合模式试验,我们指出 PMM 实际上是一种高度对称的现象,因此 ENSO 发生前 PMM 的非对称性必然与 ENSO 有关。一方面,赤道上空的深层对流对赤道太平洋中部对称厄尔尼诺/南方涛动强迫的非线性响应,使得厄尔尼诺年的北美太平洋(PNA)模式比拉尼娜年更强。另一方面,由于大多数拉尼娜现象之前都有一个厄尔尼诺现象的急剧衰减,与之前厄尔尼诺现象相关的赤道暖海温异常为在拉尼娜现象开始之前触发 PNA 提供了另一个来源。这两种机制在拉尼娜现象发生前对NETP中信风和热通量的调节作用比在厄尔尼诺现象发生前更大,在厄尔尼诺/南方涛动发生前同样会造成PMM的不对称。
{"title":"PNA nonlinearity and ENSO transition asymmetry weaken PMM before La Niña onset","authors":"Xiang Han, Tao Lian, Dake Chen, Ruikun Hu, Ting Liu, Qucheng Chu, Baosheng Li","doi":"10.1175/jcli-d-23-0769.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0769.1","url":null,"abstract":"Abstract The Pacific Meridional Mode (PMM) is one of dominant coupled modes in the northeastern tropical Pacific (NETP), characterized by a strip-like sea surface temperature (SST) anomalies spanning from Baja California to the central equatorial Pacific. While the majority of the El Niño events follow a positive PMM, only a few La Niña events are preceded by a negative PMM. Such an asymmetric activity of PMM before the onset of El Niño-Southern Oscillation (ENSO) was previously attributed to the inherent nonlinear response of the wind-evaporation-SST (WES) feedback to trade winds in NETP. Through data analysis and coupled model experiments, we pointed out that PMM is in fact a highly symmetric phenomenon, and the asymmetry of PMM before ENSO onset thus must be associated with ENSO. On the one hand, the nonlinear response of deep convection over the equator to symmetric ENSO forcing in the central equatorial Pacific permits a stronger Pacific North America (PNA) pattern in El Niño years than in La Niña years. On the other hand, since the majority of La Niña events are preceded by a sharp decay of an El Niño, the warm equatorial SST anomalies associated with the preceding El Niño provides another source to trigger PNA before La Niña onset. The two mechanisms modulate the trade winds and heat fluxes in NETP more heavily before La Niña onset than the El Niño onset, and equally contribute to PMM asymmetry before ENSO onset.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"23 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the variations and mechanisms of global land monsoons during Marine Isotope Stage 3 解密海洋同位素第三阶段全球陆地季风的变化和机制
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-03 DOI: 10.1175/jcli-d-23-0584.1
Jinzhe Zhang, Qing Yan, Nanxuan Jiang, Chuncheng Guo
Abstract Marine Isotope Stage 3 (MIS 3) is characterized by significant millennial-scale climatic oscillations between cold stadials and mild interstadials, which presents a valuable case for understanding hydrological response to abrupt climate change. Through a set of coupled model simulations, our results broadly show an anti-phased interhemispheric change in land monsoonal precipitation during the present-day relative to MIS 3 interstadial and the stadial-interstadial transition, with a general decrease in the Northern Hemisphere but an increase in the Southern Hemisphere. The anti-phased pattern is largely caused by the change in orbital insolation during the present-day relative to MIS 3 interstadial whereas by the weakened Atlantic Meridional Overturning Circulation during the interstadial-stadial transition. However, there are obvious discrepancies in precipitation response and underlying mechanisms among individual monsoon domains and across different periods. Based on the moisture budget analysis, we indicate that the dynamic factor mainly explains the decreased monsoonal rainfall in the Northern Hemisphere during the present-day relative to the MIS 3 interstadial, whereas the thermodynamic term is largely responsible for the increased precipitation in the Southern Hemisphere. In contrast, the dynamic factor plays an important role in the variation of precipitation over all the monsoon zones from the MIS 3 interstadial to stadial states, with the thermodynamic term mainly contributing to the decreased tropical monsoonal precipitation in the colder Northern Hemisphere. Our results help improve the understanding of global monsoon variations under intermediate glacial climate conditions and shed light on their behaviors under potentially rapid climate change in the future.
摘要 海洋同位素阶段 3(MIS 3)的特点是在寒冷的恒年期和温和的间冰期之间出现显著的千年尺度气候振荡,这为了解水文对气候突变的响应提供了一个有价值的案例。通过一组耦合模型模拟,我们的结果大致显示,在现今相对于 MIS 3 间期和间期-间期过渡期间,陆地季风降水量出现了反阶段的半球间变化,北半球降水量普遍减少,而南半球则有所增加。这种反相模式主要是由于现今相对于 MIS 3 间期的轨道日照变化造成的,而在间期-恒星过渡期间,大西洋经向翻转环流减弱也是造成这种反相模式的原因。然而,不同季风域和不同时期的降水响应及其内在机制存在明显差异。根据水汽预算分析,我们发现,相对于 MIS 3 间期,动态因子主要解释了现今北半球季风降水量减少的原因,而热力学因子则是南半球降水量增加的主要原因。与此相反,动态因子在所有季风区从 MIS 3 间期到恒定期的降水量变化中发挥了重要作用,而热力学因子主要导致了较冷的北半球热带季风降水量的减少。我们的研究结果有助于加深对冰川中期气候条件下全球季风变化的理解,并揭示了未来可能发生的快速气候变化下季风的行为。
{"title":"Deciphering the variations and mechanisms of global land monsoons during Marine Isotope Stage 3","authors":"Jinzhe Zhang, Qing Yan, Nanxuan Jiang, Chuncheng Guo","doi":"10.1175/jcli-d-23-0584.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0584.1","url":null,"abstract":"Abstract Marine Isotope Stage 3 (MIS 3) is characterized by significant millennial-scale climatic oscillations between cold stadials and mild interstadials, which presents a valuable case for understanding hydrological response to abrupt climate change. Through a set of coupled model simulations, our results broadly show an anti-phased interhemispheric change in land monsoonal precipitation during the present-day relative to MIS 3 interstadial and the stadial-interstadial transition, with a general decrease in the Northern Hemisphere but an increase in the Southern Hemisphere. The anti-phased pattern is largely caused by the change in orbital insolation during the present-day relative to MIS 3 interstadial whereas by the weakened Atlantic Meridional Overturning Circulation during the interstadial-stadial transition. However, there are obvious discrepancies in precipitation response and underlying mechanisms among individual monsoon domains and across different periods. Based on the moisture budget analysis, we indicate that the dynamic factor mainly explains the decreased monsoonal rainfall in the Northern Hemisphere during the present-day relative to the MIS 3 interstadial, whereas the thermodynamic term is largely responsible for the increased precipitation in the Southern Hemisphere. In contrast, the dynamic factor plays an important role in the variation of precipitation over all the monsoon zones from the MIS 3 interstadial to stadial states, with the thermodynamic term mainly contributing to the decreased tropical monsoonal precipitation in the colder Northern Hemisphere. Our results help improve the understanding of global monsoon variations under intermediate glacial climate conditions and shed light on their behaviors under potentially rapid climate change in the future.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"147 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models 北大西洋副极地平均状态影响 CMIP6 模型中大西洋经向翻转环流对北大西洋涛动的响应
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-03 DOI: 10.1175/jcli-d-23-0470.1
Annika Reintges, Jon I. Robson, Rowan Sutton, Stephen G. Yeager
Abstract The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in climate, transporting heat and salt to the subpolar North Atlantic. The AMOC’s variability is sensitive to atmospheric forcing, especially the North Atlantic Oscillation (NAO). Because AMOC observations are short, climate models are a valuable tool to study the AMOC’s variability. Yet, there are known issues with climate models, like uncertainties and systematic biases. To investigate this, pre-industrial control experiments from models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) are evaluated. There is large, but correlated, spread in the models’ subpolar gyre mean surface temperature and salinity. By splitting models into groups of either a warm-salty or cold-fresh subpolar gyre, it is shown that warm-salty models have a lower sea ice cover in the Labrador Sea and, hence, enable a larger heat loss during a positive NAO. Stratification in the Labrador Sea is also weaker in warm-salty models, such that the larger NAO-related heat loss can also affect greater depths. As a result, subsurface density anomalies are much stronger in the warm-salty models than in those that tend to be cold and fresh. As these anomalies propagate southward along the western boundary, they establish a zonal density gradient anomaly that promotes a stronger delayed AMOC response to the NAO in the warm-salty models. These findings demonstrate how model mean state errors are linked across variables and affect variability, emphasizing the need for improvement of the subpolar North Atlantic mean states in models.
摘要 大西洋经向翻转环流(AMOC)在气候中发挥着重要作用,向北大西洋副极地输送热量和盐分。AMOC的变化对大气胁迫非常敏感,尤其是北大西洋涛动(NAO)。由于 AMOC 观测时间较短,气候模式是研究 AMOC 变率的重要工具。然而,气候模式也存在一些已知问题,如不确定性和系统性偏差。为了研究这个问题,对参加耦合模式相互比较项目第 6 阶段(CMIP6)的模式进行了工业化前控制实验评估。模型的副极地涡旋平均表面温度和盐度有很大的差异,但相互关联。通过将模式分成暖咸或冷鲜副极地涡旋两组,结果表明,暖咸模式在拉布拉多海的海冰覆盖率较低,因此在正西北大西洋环流期间热量损失较大。在暖咸模型中,拉布拉多海的分层作用也较弱,因此与西北大西洋环流有关的更大热量损失也会影响到更深处。因此,暖咸型模式的次表层密度异常要比冷鲜型模式强得多。当这些异常沿西部边界向南传播时,它们会形成带状密度梯度异常,从而在暖咸模式中促进更强的延迟AMOC对NAO的响应。这些发现说明了模式平均状态误差是如何在不同变量之间相互联系并影响变率的,强调了改进模式中北大西洋副极地平均状态的必要性。
{"title":"Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models","authors":"Annika Reintges, Jon I. Robson, Rowan Sutton, Stephen G. Yeager","doi":"10.1175/jcli-d-23-0470.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0470.1","url":null,"abstract":"Abstract The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in climate, transporting heat and salt to the subpolar North Atlantic. The AMOC’s variability is sensitive to atmospheric forcing, especially the North Atlantic Oscillation (NAO). Because AMOC observations are short, climate models are a valuable tool to study the AMOC’s variability. Yet, there are known issues with climate models, like uncertainties and systematic biases. To investigate this, pre-industrial control experiments from models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) are evaluated. There is large, but correlated, spread in the models’ subpolar gyre mean surface temperature and salinity. By splitting models into groups of either a warm-salty or cold-fresh subpolar gyre, it is shown that warm-salty models have a lower sea ice cover in the Labrador Sea and, hence, enable a larger heat loss during a positive NAO. Stratification in the Labrador Sea is also weaker in warm-salty models, such that the larger NAO-related heat loss can also affect greater depths. As a result, subsurface density anomalies are much stronger in the warm-salty models than in those that tend to be cold and fresh. As these anomalies propagate southward along the western boundary, they establish a zonal density gradient anomaly that promotes a stronger delayed AMOC response to the NAO in the warm-salty models. These findings demonstrate how model mean state errors are linked across variables and affect variability, emphasizing the need for improvement of the subpolar North Atlantic mean states in models.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"1 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interannual variation of summer compound hot and drought events in Xinjiang and its relationship with the North Atlantic sea surface temperature 新疆夏季复合高温干旱事件的年际变化及其与北大西洋海面温度的关系
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-03 DOI: 10.1175/jcli-d-24-0086.1
Xiaolu Zhang, Jiapeng Miao, Xiaoxin Wang, Botao Zhou
Abstract Xinjiang suffers compound hot and drought events under global warming. However, less attention has been paid to physical mechanisms of the variability of compound hot and drought events in this region. This article investigates the interannual variation of summer (June–July–August) compound hot and drought events in Xinjiang and its relationship with the sea surface temperature (SST) over the North Atlantic. The results show that its first Empirical Orthogonal Function (EOF) mode features a spatially homogenous pattern. This mode is closely connected with the simultaneous meridional negative–positive–negative SST anomalies over the North Atlantic. The summer North Atlantic tripole SST anomalies can trigger a remarkable wave train extending from the North Atlantic to Eurasia, consequently inducing an anomalous high-pressure system over the Iran–Pamirs Plateau, which is conducive to the increase of air temperature from the surface to the upper troposphere over Xinjiang. The warmer troposphere further strengthens the western Asian subtropical meridional temperature gradient and thereby enhances the westerly wind to the north flank of the West Asian subtropical westerly jet (WASWJ). As a result, the WASWJ is displaced northward, which intensifies the sinking motion and prevents the water vapor transport to Xinjiang, leading to a decrease of precipitation in the target region. The higher temperature and less precipitation contribute to the occurrence of compound hot and drought events over Xinjiang. Numerical simulations based on the Community Atmospheric Model version 4 (CAM4) further confirm the relationship between the North Atlantic tripole SST anomalies and compound hot and drought events in Xinjiang during summer on the interannual time scale.
摘要 在全球变暖的情况下,新疆出现了复合高温干旱事件。然而,人们对该地区复合高温干旱事件变异的物理机制关注较少。本文研究了新疆夏季(6-7-8 月)复合高温干旱事件的年际变化及其与北大西洋海面温度(SST)的关系。结果表明,其第一个经验正交函数(EOF)模式具有空间同质模式的特征。该模式与北大西洋上空同时出现的经向负-正-负 SST 异常密切相关。夏季北大西洋三极海温异常会引发一列从北大西洋延伸到欧亚大陆的显著波列,从而在伊朗-帕米尔高原上空诱发异常高压系统,有利于新疆上空从地表到对流层上部的气温上升。对流层变暖进一步加强了西亚副热带经向温度梯度,从而增强了西亚副热带西风射流(WASWJ)北侧的西风。因此,西亚副热带西风射流向北移动,加剧了下沉运动,阻碍了水汽向新疆的输送,导致目标区域降水减少。气温升高和降水减少导致新疆上空出现复合高温干旱事件。基于共同体大气模式第 4 版(CAM4)的数值模拟进一步证实了新疆夏季北大西洋三极海温异常与复合高温干旱事件在年际尺度上的关系。
{"title":"Interannual variation of summer compound hot and drought events in Xinjiang and its relationship with the North Atlantic sea surface temperature","authors":"Xiaolu Zhang, Jiapeng Miao, Xiaoxin Wang, Botao Zhou","doi":"10.1175/jcli-d-24-0086.1","DOIUrl":"https://doi.org/10.1175/jcli-d-24-0086.1","url":null,"abstract":"Abstract Xinjiang suffers compound hot and drought events under global warming. However, less attention has been paid to physical mechanisms of the variability of compound hot and drought events in this region. This article investigates the interannual variation of summer (June–July–August) compound hot and drought events in Xinjiang and its relationship with the sea surface temperature (SST) over the North Atlantic. The results show that its first Empirical Orthogonal Function (EOF) mode features a spatially homogenous pattern. This mode is closely connected with the simultaneous meridional negative–positive–negative SST anomalies over the North Atlantic. The summer North Atlantic tripole SST anomalies can trigger a remarkable wave train extending from the North Atlantic to Eurasia, consequently inducing an anomalous high-pressure system over the Iran–Pamirs Plateau, which is conducive to the increase of air temperature from the surface to the upper troposphere over Xinjiang. The warmer troposphere further strengthens the western Asian subtropical meridional temperature gradient and thereby enhances the westerly wind to the north flank of the West Asian subtropical westerly jet (WASWJ). As a result, the WASWJ is displaced northward, which intensifies the sinking motion and prevents the water vapor transport to Xinjiang, leading to a decrease of precipitation in the target region. The higher temperature and less precipitation contribute to the occurrence of compound hot and drought events over Xinjiang. Numerical simulations based on the Community Atmospheric Model version 4 (CAM4) further confirm the relationship between the North Atlantic tripole SST anomalies and compound hot and drought events in Xinjiang during summer on the interannual time scale.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"4 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No evidence of winter warming in Eurasia following large, low-latitude volcanic eruptions during the Last Millennium 没有证据表明欧亚大陆在上个千年发生大规模低纬度火山爆发后冬季变暖
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-02 DOI: 10.1175/jcli-d-23-0625.1
Ernesto Tejedor, Lorenzo M. Polvani, Nathan J. Steiger, Mathias Vuille, Jason E. Smerdon
Abstract We critically reexamine the question of whether volcanic eruptions cause surface warming over Eurasia in winter, in the light of recent modeling studies that have suggested internal variability may overwhelm any forced volcanic response, even for the very largest eruptions during the Common Era. Focusing on the Last Millennium, we combine model output, instrumental observations, tree-ring records, and ice cores to build a new temperature reconstruction that specifically targets the boreal winter season. We focus on 20 eruptions over the Last Millennium with volcanic stratospheric sulfur injections (VSSI) larger than the 1991 Pinatubo eruption. We find that only 7 of these 20 large events are followed by warm surface temperature anomalies over Eurasia in the first post-eruption winter. Examining the 13 events that show cold post-eruption anomalies we find no correlation between the amplitude of winter cooling and VSSI mass. We also find no evidence that the North Atlantic Oscillation is correlated with VSSI in winter, a key element of the proposed mechanism through which large low-latitude eruptions might cause winter warming over Eurasia. Furthermore, by inspecting individual eruptions rather than combining events into a superposed epoch analysis, we are able to reconcile our findings with those of previous studies. Analysis of two additional paleoclimatic datasets corroborates the lack of post-eruption Eurasian winter warming. Our findings, covering the entire Last Millennium, confirm the findings of most recent modeling studies, and offer important new evidence that large low-latitude eruptions are not, in general, followed by significant surface wintertime warming over Eurasia.
摘要 最近的建模研究表明,即使是公元纪最大的火山喷发,内部变率也可能压倒任何被迫的火山反应,有鉴于此,我们重新严格审查了火山喷发是否会导致欧亚大陆冬季地表变暖的问题。我们将重点放在上个千年,结合模型输出、仪器观测、树环记录和冰芯,建立了专门针对北方冬季的新的温度重建。我们重点研究了最近千年中 20 次火山喷发,其平流层硫注入量(VSSI)大于 1991 年皮纳图博火山喷发。我们发现,在这 20 次大型喷发事件中,只有 7 次在喷发后的第一个冬季欧亚大陆上空出现了温暖的地表温度异常。在研究 13 个出现爆发后低温异常的事件时,我们发现冬季降温的幅度与 VSSI 质量之间没有相关性。我们也没有发现北大西洋涛动与冬季 VSSI 相关的证据,而 VSSI 是低纬度大喷发可能导致欧亚大陆冬季变暖的机制中的一个关键因素。此外,通过对单次火山爆发的研究,而不是将火山爆发事件合并到一个叠加的年代分析中,我们能够将我们的研究结果与之前的研究结果相协调。对另外两个古气候数据集的分析证实了火山爆发后欧亚大陆冬季没有变暖。我们的研究结果涵盖了整个上个千年,证实了最近大多数建模研究的结果,并提供了重要的新证据,证明大型低纬度火山爆发后,欧亚大陆冬季地表一般不会明显变暖。
{"title":"No evidence of winter warming in Eurasia following large, low-latitude volcanic eruptions during the Last Millennium","authors":"Ernesto Tejedor, Lorenzo M. Polvani, Nathan J. Steiger, Mathias Vuille, Jason E. Smerdon","doi":"10.1175/jcli-d-23-0625.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0625.1","url":null,"abstract":"Abstract We critically reexamine the question of whether volcanic eruptions cause surface warming over Eurasia in winter, in the light of recent modeling studies that have suggested internal variability may overwhelm any forced volcanic response, even for the very largest eruptions during the Common Era. Focusing on the Last Millennium, we combine model output, instrumental observations, tree-ring records, and ice cores to build a new temperature reconstruction that specifically targets the boreal winter season. We focus on 20 eruptions over the Last Millennium with volcanic stratospheric sulfur injections (VSSI) larger than the 1991 Pinatubo eruption. We find that only 7 of these 20 large events are followed by warm surface temperature anomalies over Eurasia in the first post-eruption winter. Examining the 13 events that show cold post-eruption anomalies we find no correlation between the amplitude of winter cooling and VSSI mass. We also find no evidence that the North Atlantic Oscillation is correlated with VSSI in winter, a key element of the proposed mechanism through which large low-latitude eruptions might cause winter warming over Eurasia. Furthermore, by inspecting individual eruptions rather than combining events into a superposed epoch analysis, we are able to reconcile our findings with those of previous studies. Analysis of two additional paleoclimatic datasets corroborates the lack of post-eruption Eurasian winter warming. Our findings, covering the entire Last Millennium, confirm the findings of most recent modeling studies, and offer important new evidence that large low-latitude eruptions are not, in general, followed by significant surface wintertime warming over Eurasia.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"12 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ocean Complexity Shapes Sea Surface Temperature Variability in a CESM2 Coupled Model Hierarchy 海洋复杂性塑造了 CESM2 耦合模型层次结构中的海表温度变异性
IF 4.9 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-07-02 DOI: 10.1175/jcli-d-23-0621.1
Sarah M. Larson, Kay McMonigal, Yuko Okumura, Dillon Amaya, Antonietta Capotondi, Katinka Bellomo, Isla R. Simpson, Amy C. Clement
Abstract To improve understanding of ocean processes impacting monthly sea surface temperature (SST) variability, we analyze a Community Earth System Model version 2 hierarchy in which models vary only in their degree of ocean complexity. The most realistic ocean is a dynamical ocean model, as part of a fully coupled model (FCM). The next most realistic ocean, from a mechanically decoupled model (MDM), is like the FCM but excludes anomalous wind stress-driven ocean variability. The simplest ocean is a slab ocean model (SOM). Inclusion of a buoyancy coupled dynamic ocean as in the MDM, which includes temperature advection and vertical mixing absent in the SOM, leads to dampening of SST variance everywhere and reduced persistence of SST anomalies in the high latitudes and equatorial Pacific compared to the SOM. Inclusion of anomalous wind stress-driven ocean dynamics as in the FCM leads to higher SST variance and longer persistence timescales in most regions compared to the MDM. The net role of the dynamic ocean, as an overall dampener or amplifier of anomalous SST variance and persistence is regionally dependent. Notably, we find that efforts to reduce the complexity of the ocean models in the SOM and MDM configurations result in changes in the magnitude of the thermodynamic forcing of SST variability compared to the FCM. These changes, in part, stem from differences in the seasonally varying mixed layer depth and should be considered when attempting to quantify the relative contribution of certain ocean mechanisms to differences in SST variability between the models.
摘要 为了更好地了解海洋过程对海面温度月变化的影响,我们分析了共同体地球系统模式第 2 版的层次结构,其中的模式仅在海洋复杂程度上有所不同。最现实的海洋是动力学海洋模式,是完全耦合模式(FCM)的一部分。其次是机械解耦模式(MDM)中最逼真的海洋,与全耦合模式类似,但不包括风应力驱动的海洋异常变化。最简单的海洋是板块海洋模式(SOM)。与 SOM 相比,在 MDM 中加入浮力耦合动力海洋,包括 SOM 中没有的温度平流和垂直混合,会抑制各地的 SST 变异,并降低高纬度和赤道太平洋地区 SST 异常的持续性。与 MDM 相比,在 FCM 中加入风应力驱动的海洋动力异常会导致大部分地区的 SST 变差增大,持续时标变长。动态海洋作为异常海温变异和持续性的总体抑制器或放大器,其净作用与区域有关。值得注意的是,我们发现,在 SOM 和 MDM 配置中,降低海洋模式复杂性的努力导致 SST 变率的热动力作用力大小与 FCM 相比发生了变化。这些变化部分源于季节性变化的混合层深度的差异,在试图量化某些海洋机制对模型间 SST 变率差异的相对贡献时应加以考虑。
{"title":"Ocean Complexity Shapes Sea Surface Temperature Variability in a CESM2 Coupled Model Hierarchy","authors":"Sarah M. Larson, Kay McMonigal, Yuko Okumura, Dillon Amaya, Antonietta Capotondi, Katinka Bellomo, Isla R. Simpson, Amy C. Clement","doi":"10.1175/jcli-d-23-0621.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0621.1","url":null,"abstract":"Abstract To improve understanding of ocean processes impacting monthly sea surface temperature (SST) variability, we analyze a Community Earth System Model version 2 hierarchy in which models vary only in their degree of ocean complexity. The most realistic ocean is a dynamical ocean model, as part of a fully coupled model (FCM). The next most realistic ocean, from a mechanically decoupled model (MDM), is like the FCM but excludes anomalous wind stress-driven ocean variability. The simplest ocean is a slab ocean model (SOM). Inclusion of a buoyancy coupled dynamic ocean as in the MDM, which includes temperature advection and vertical mixing absent in the SOM, leads to dampening of SST variance everywhere and reduced persistence of SST anomalies in the high latitudes and equatorial Pacific compared to the SOM. Inclusion of anomalous wind stress-driven ocean dynamics as in the FCM leads to higher SST variance and longer persistence timescales in most regions compared to the MDM. The net role of the dynamic ocean, as an overall dampener or amplifier of anomalous SST variance and persistence is regionally dependent. Notably, we find that efforts to reduce the complexity of the ocean models in the SOM and MDM configurations result in changes in the magnitude of the thermodynamic forcing of SST variability compared to the FCM. These changes, in part, stem from differences in the seasonally varying mixed layer depth and should be considered when attempting to quantify the relative contribution of certain ocean mechanisms to differences in SST variability between the models.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"78 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Climate
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1