{"title":"An SoC Design for Future Mobile DNA Detection","authors":"Yunus Dawji;Zhongpan Wu;Abel Beyene;Karim Hammad;Ebrahim Ghafar-Zadeh;Sebastian Magierowski","doi":"10.1109/LES.2023.3321587","DOIUrl":null,"url":null,"abstract":"Existing miniature DNA sequencing devices hold significant promise to serve as mobile/personal genomic analysis systems in the future. But a key challenge to this vision is the absence of adequate low-power bioinformatic computing ability within the sequencing device itself. In this letter, we discuss the design and demonstrate a system-on-chip (SoC) based on an accelerated RISC-V core for such a task. The chip was fabricated in 22-nm CMOS and executes almost \n<inline-formula> <tex-math>$10\\times $ </tex-math></inline-formula>\n faster than a commercial mobile processor on a DNA sequence detection task while achieving \n<inline-formula> <tex-math>$200\\times $ </tex-math></inline-formula>\n better energy efficiency.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 2","pages":"86-89"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10268988/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Existing miniature DNA sequencing devices hold significant promise to serve as mobile/personal genomic analysis systems in the future. But a key challenge to this vision is the absence of adequate low-power bioinformatic computing ability within the sequencing device itself. In this letter, we discuss the design and demonstrate a system-on-chip (SoC) based on an accelerated RISC-V core for such a task. The chip was fabricated in 22-nm CMOS and executes almost
$10\times $
faster than a commercial mobile processor on a DNA sequence detection task while achieving
$200\times $
better energy efficiency.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.