A study of the phenomenon of “crackle” associated with the noise of high-performance aircraft at afterburner

IF 1.2 4区 工程技术 Q3 ACOUSTICS International Journal of Aeroacoustics Pub Date : 2023-09-25 DOI:10.1177/1475472x231199182
Christopher KW Tam, John T Spyropoulos, Allan C Aubert, Russell W Powers
{"title":"A study of the phenomenon of “crackle” associated with the noise of high-performance aircraft at afterburner","authors":"Christopher KW Tam, John T Spyropoulos, Allan C Aubert, Russell W Powers","doi":"10.1177/1475472x231199182","DOIUrl":null,"url":null,"abstract":"Ffowcs Williams et al were the first to discover crackle in the noise of the Concorde when the Olympus 593 engine which propelled Concorde was operating at afterburner power. Ffowcs Williams et al described crackle as a transient phenomenon. The primary objective of the present investigation is to show that the noise of F-18E aircraft has crackle. The fundamental elements in the noise of a crackling jet described by Ffowcs Williams et al are sawtooth-like pulses, bursts and trains of bursts. All these characteristic features of pressure pulses are identified in the noise of F-18E aircraft. By including a minimum pulse amplitude requirement based on the level found in the noise of the Concorde by Ffowcs Williams et al, a set of sufficiency conditions for the presence of crackle is established. It is found that crackle exists in the noise of an F-18E aircraft over a fairly large angular sector in the downstream direction. In the literature, the existence of sawtooth-like sound pulses in a noise field is often taken as an indicator of the presence of crackle. The importance of pressure pulse waveform on its impact on human hearing is briefly investigated by using a simple mechanical model of the ear.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1475472x231199182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ffowcs Williams et al were the first to discover crackle in the noise of the Concorde when the Olympus 593 engine which propelled Concorde was operating at afterburner power. Ffowcs Williams et al described crackle as a transient phenomenon. The primary objective of the present investigation is to show that the noise of F-18E aircraft has crackle. The fundamental elements in the noise of a crackling jet described by Ffowcs Williams et al are sawtooth-like pulses, bursts and trains of bursts. All these characteristic features of pressure pulses are identified in the noise of F-18E aircraft. By including a minimum pulse amplitude requirement based on the level found in the noise of the Concorde by Ffowcs Williams et al, a set of sufficiency conditions for the presence of crackle is established. It is found that crackle exists in the noise of an F-18E aircraft over a fairly large angular sector in the downstream direction. In the literature, the existence of sawtooth-like sound pulses in a noise field is often taken as an indicator of the presence of crackle. The importance of pressure pulse waveform on its impact on human hearing is briefly investigated by using a simple mechanical model of the ear.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能飞机加力燃烧室噪声中的“裂纹”现象研究
当推动协和式飞机的奥林巴斯593发动机以加力动力运行时,Ffowcs Williams等人首先发现了协和式飞机噪音中的裂纹。Ffowcs Williams等人将裂纹描述为一种瞬态现象。本调查的主要目的是表明F-18E飞机的噪声有裂纹。Ffowcs Williams等人描述的噼啪声射流噪声的基本要素是锯齿状脉冲、脉冲和脉冲序列。在F-18E飞机噪声中识别了压力脉冲的特征特征。通过包含一个基于Ffowcs Williams等人在协和式飞机噪声中发现的水平的最小脉冲幅度要求,建立了一组裂纹存在的充分条件。在F-18E飞机的噪声中,在下游方向上有相当大的角扇形存在裂纹。在文献中,噪声场中锯齿状声脉冲的存在通常被认为是裂纹存在的标志。通过建立简单的耳力学模型,简要探讨了压力脉冲波形对人听力影响的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
期刊最新文献
Precise acoustic drone localization and tracking via drone noise: Steered response power - phase transform around harmonics Aerodynamic and aeroacoustic characteristics of rocket sled under strong ground effect Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics Aeroacoustic source localization using the microphone array method with application to wind turbine noise Christopher Tam: Brief history and accomplishments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1