Supersonic jet noise and screech tone suppression using cross-wire

IF 1.2 4区 工程技术 Q3 ACOUSTICS International Journal of Aeroacoustics Pub Date : 2023-12-29 DOI:10.1177/1475472x231225628
Kaleeswaran Periyasamy, Kadiresh Parthasarathy Natarajan
{"title":"Supersonic jet noise and screech tone suppression using cross-wire","authors":"Kaleeswaran Periyasamy, Kadiresh Parthasarathy Natarajan","doi":"10.1177/1475472x231225628","DOIUrl":null,"url":null,"abstract":"This experimental investigation is aimed at assessing how the introduction of a cross-wire at the exit of a CD nozzle influences the performance of a supersonic nozzle. The study focuses on cold air jets generated by De Laval nozzles equipped with cross-wires and baseline configurations, particularly at design Mach numbers of 1.5 and 1.75. The investigation involves collecting measurements from the noise field emitted by the cross-wire nozzle with a 2% obstruction at the exit. This passive control approach effectively reduces the occurrence of screech tones in both over-expanded and under-expanded conditions in the azimuthal plane at appropriate operating pressures. Various acoustic parameters, including sound pressure levels (SPL), Strouhal numbers, and the overall sound pressure level spectra (OASPL) are recorded. Schlieren imaging captures images of shock cell patterns, illustrating the impact of shock-associated noise. In comparison to a baseline nozzle, the results demonstrate that a CD nozzle equipped with a cross-wire proves to be a proficient screech tone suppressor, leading to an average reduction of up to 5 dB in OASPL in under-expanded and over-expanded scenarios.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472x231225628","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This experimental investigation is aimed at assessing how the introduction of a cross-wire at the exit of a CD nozzle influences the performance of a supersonic nozzle. The study focuses on cold air jets generated by De Laval nozzles equipped with cross-wires and baseline configurations, particularly at design Mach numbers of 1.5 and 1.75. The investigation involves collecting measurements from the noise field emitted by the cross-wire nozzle with a 2% obstruction at the exit. This passive control approach effectively reduces the occurrence of screech tones in both over-expanded and under-expanded conditions in the azimuthal plane at appropriate operating pressures. Various acoustic parameters, including sound pressure levels (SPL), Strouhal numbers, and the overall sound pressure level spectra (OASPL) are recorded. Schlieren imaging captures images of shock cell patterns, illustrating the impact of shock-associated noise. In comparison to a baseline nozzle, the results demonstrate that a CD nozzle equipped with a cross-wire proves to be a proficient screech tone suppressor, leading to an average reduction of up to 5 dB in OASPL in under-expanded and over-expanded scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用交叉线抑制超音速喷气噪声和尖啸声
本实验调查旨在评估在 CD 喷嘴出口处引入横丝如何影响超音速喷嘴的性能。研究重点是配备了横丝和基线配置的德拉瓦尔喷嘴产生的冷空气喷流,尤其是在设计马赫数为 1.5 和 1.75 时。调查包括收集出口处有 2% 障碍物的横丝喷嘴发出的噪声场的测量结果。在适当的工作压力下,这种被动控制方法有效地减少了方位面上过扩张和欠扩张条件下尖啸音的出现。记录了各种声学参数,包括声压级 (SPL)、斯特劳哈尔数和总声压级频谱 (OASPL)。Schlieren 成像可捕捉到冲击单元模式的图像,说明冲击相关噪声的影响。结果表明,与基线喷嘴相比,配备了交叉线的 CD 喷嘴可有效抑制尖啸声,在扩展不足和扩展过度的情况下,OASPL 平均可降低 5 分贝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
期刊最新文献
Precise acoustic drone localization and tracking via drone noise: Steered response power - phase transform around harmonics Aerodynamic and aeroacoustic characteristics of rocket sled under strong ground effect Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics Aeroacoustic source localization using the microphone array method with application to wind turbine noise Christopher Tam: Brief history and accomplishments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1