Pub Date : 2024-01-05DOI: 10.1177/1475472x231225629
L. A. Bonomo, Nicolas T. Quintino, André M N Spillere, Paul B Murray, J. Cordioli
Several techniques are available to characterize acoustic liners when subject to grazing flow and high sound pressure level (SPL). Although the in situ technique started as the primary experimental procedure, impedance eduction techniques have gained popularity over the past years. However, there is a lack of comparison between these group of methods, especially at conditions typically found in turbofan engines. In this work, in situ and impedance eduction techniques are compared at high flow velocities and SPL using typical acoustic liner test samples and considering uniform flow. Both upstream and downstream acoustic wave propagation will also be considered in view of the discrepancies recently observed by eduction methods. A new method to compensate the instrumentation effect in the in situ technique is proposed and validated. Results are obtained for bulk Mach numbers up to 0.5 and SPLs up to 145 dB for both in situ and two eduction techniques. The three methods presents good agreement in the absence of flow. Unexpected results are observed with higher flow Mach numbers using the eduction technique.
{"title":"A comparison of in situ and impedance eduction experimental techniques for acoustic liners with grazing flow and high sound pressure level","authors":"L. A. Bonomo, Nicolas T. Quintino, André M N Spillere, Paul B Murray, J. Cordioli","doi":"10.1177/1475472x231225629","DOIUrl":"https://doi.org/10.1177/1475472x231225629","url":null,"abstract":"Several techniques are available to characterize acoustic liners when subject to grazing flow and high sound pressure level (SPL). Although the in situ technique started as the primary experimental procedure, impedance eduction techniques have gained popularity over the past years. However, there is a lack of comparison between these group of methods, especially at conditions typically found in turbofan engines. In this work, in situ and impedance eduction techniques are compared at high flow velocities and SPL using typical acoustic liner test samples and considering uniform flow. Both upstream and downstream acoustic wave propagation will also be considered in view of the discrepancies recently observed by eduction methods. A new method to compensate the instrumentation effect in the in situ technique is proposed and validated. Results are obtained for bulk Mach numbers up to 0.5 and SPLs up to 145 dB for both in situ and two eduction techniques. The three methods presents good agreement in the absence of flow. Unexpected results are observed with higher flow Mach numbers using the eduction technique.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"88 21","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.1177/1475472x231225631
Deepak C. Akiwate, Phillip Joseph, Anthony B. Parry, Chaitanya Paruchuri
This study presents a predominantly numerical and theoretical investigation into the balance of tonal and broadband noise due to an isolated propeller in uniform motion. The predicted trends in the balance between tonal and broadband noise radiation with varying blade number and speed of rotation is supported by preliminary experimental measurements. Here, we assume that the dominant noise generation mechanisms are the tones due to steady loading and blade thickness, while the broadband noise is due to boundary layer scattering at the trailing edge. The study also provides a detailed comparison between the tonal and broadband formulations to highlight their similarities and differences. In this paper, we show that the main differences in the behaviour and character of the tonal and broadband spectra and directivities are due to the number of acoustic modes that can be excited. This paper presents a parametric study in which the variation in tonal and broadband noise is investigated as a function of blade tip Mach number ( M t) and blade number ( B) whilst maintaining constant solidity and thrust. This study is repeated for three NACA airfoil profiles. It is found that tonal noise dominates at low blade number and low frequency and/or higher tip speeds, while broadband noise is the major contributor at high-frequencies and at high blade number and low tip speeds. The results show a clear distinction between the combinations of M t and B that are dominated by tonal and by broadband noise. These results are interpreted from fundamental principles relating to modal radiation efficiencies. We confirm this trend of balance between tonal and broadband noise with measured noise at different B and M t. The results of this paper will serve as useful guidelines for preliminary propeller design.
本研究主要对匀速运动的孤立螺旋桨所产生的音调噪声和宽带噪声的平衡进行了数值和理论研究。初步的实验测量结果证实了随着叶片数量和转速的变化,音调噪声和宽带噪声辐射平衡的预测趋势。在这里,我们假设主要的噪声产生机制是由稳定加载和叶片厚度引起的音调,而宽带噪声则是由后缘的边界层散射引起的。这项研究还对音调和宽带噪声进行了详细比较,以突出它们的异同。在本文中,我们表明音调和宽带频谱和指向性在行为和特性上的主要差异是由可激发的声学模式数量造成的。本文介绍了一项参数研究,在保持固体度和推力不变的情况下,研究了音调噪声和宽带噪声的变化与叶尖马赫数(M t)和叶片数(B)的函数关系。这项研究针对三个 NACA 翼面轮廓重复进行。研究发现,在低叶片数、低频率和/或较高叶尖速度时,音调噪声占主导地位,而在高频率、高叶片数和低叶尖速度时,宽带噪声则是主要因素。结果表明,音调噪声和宽带噪声占主导地位的 M t 和 B 组合之间存在明显区别。这些结果是根据模态辐射效率的基本原理解释的。本文的结果将为螺旋桨的初步设计提供有用的指导。
{"title":"On the balance between the tonal and broadband noise of isolated propellers","authors":"Deepak C. Akiwate, Phillip Joseph, Anthony B. Parry, Chaitanya Paruchuri","doi":"10.1177/1475472x231225631","DOIUrl":"https://doi.org/10.1177/1475472x231225631","url":null,"abstract":"This study presents a predominantly numerical and theoretical investigation into the balance of tonal and broadband noise due to an isolated propeller in uniform motion. The predicted trends in the balance between tonal and broadband noise radiation with varying blade number and speed of rotation is supported by preliminary experimental measurements. Here, we assume that the dominant noise generation mechanisms are the tones due to steady loading and blade thickness, while the broadband noise is due to boundary layer scattering at the trailing edge. The study also provides a detailed comparison between the tonal and broadband formulations to highlight their similarities and differences. In this paper, we show that the main differences in the behaviour and character of the tonal and broadband spectra and directivities are due to the number of acoustic modes that can be excited. This paper presents a parametric study in which the variation in tonal and broadband noise is investigated as a function of blade tip Mach number ( M t) and blade number ( B) whilst maintaining constant solidity and thrust. This study is repeated for three NACA airfoil profiles. It is found that tonal noise dominates at low blade number and low frequency and/or higher tip speeds, while broadband noise is the major contributor at high-frequencies and at high blade number and low tip speeds. The results show a clear distinction between the combinations of M t and B that are dominated by tonal and by broadband noise. These results are interpreted from fundamental principles relating to modal radiation efficiencies. We confirm this trend of balance between tonal and broadband noise with measured noise at different B and M t. The results of this paper will serve as useful guidelines for preliminary propeller design.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"115 15","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139383387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-30DOI: 10.1177/1475472x231225630
Mingtai Chen, Jie Hua, Nick Maier, Dylan Burdette
The tiltrotor design is favored for urban air mobility (UAM) prototypes due to the combination of vertical takeoff and landing (VTOL) capability and efficient forward flight. With rising UAM air traffic at low altitudes, noise from these aircraft is a crucial design factor. Most tiltrotor noise research focuses on high disk loading and Reynolds number setups, leaving smaller aircraft configurations less explored. This study investigates aero-acoustic trends from rotor-wing interaction at low disk loading ([Formula: see text]100 N/m2) and Reynolds number (Re < 100,000). While prior literature suggests lowering disk loading and reducing rotor wake interference can mitigate rotor noise, such ideas lack empirical validation. The setup involves an anechoic chamber housing a two-blade rotor, along with flat and NACA 0012 airfoil wings. Microphones and a rotation stage capture acoustic data for analysis. Factors like flow recirculation, isolated rotor noise, rotor height, rotation direction/rate, and wing curvature are assessed for impact on noise signature. It is found that the deflected rotor wake in rotor-wing interaction significantly increases low-frequency broadband noise and overall sound pressure level (OASPL), compared to an isolated rotor. Dominant tonal noise diminishes based on the strength of the deflected rotor wake. These findings offer insights into reducing noise from rotor wake impingement on the wing.
{"title":"Acoustic measurements in single-rotor/wing interaction at low disk loading and Reynolds number","authors":"Mingtai Chen, Jie Hua, Nick Maier, Dylan Burdette","doi":"10.1177/1475472x231225630","DOIUrl":"https://doi.org/10.1177/1475472x231225630","url":null,"abstract":"The tiltrotor design is favored for urban air mobility (UAM) prototypes due to the combination of vertical takeoff and landing (VTOL) capability and efficient forward flight. With rising UAM air traffic at low altitudes, noise from these aircraft is a crucial design factor. Most tiltrotor noise research focuses on high disk loading and Reynolds number setups, leaving smaller aircraft configurations less explored. This study investigates aero-acoustic trends from rotor-wing interaction at low disk loading ([Formula: see text]100 N/m2) and Reynolds number (Re < 100,000). While prior literature suggests lowering disk loading and reducing rotor wake interference can mitigate rotor noise, such ideas lack empirical validation. The setup involves an anechoic chamber housing a two-blade rotor, along with flat and NACA 0012 airfoil wings. Microphones and a rotation stage capture acoustic data for analysis. Factors like flow recirculation, isolated rotor noise, rotor height, rotation direction/rate, and wing curvature are assessed for impact on noise signature. It is found that the deflected rotor wake in rotor-wing interaction significantly increases low-frequency broadband noise and overall sound pressure level (OASPL), compared to an isolated rotor. Dominant tonal noise diminishes based on the strength of the deflected rotor wake. These findings offer insights into reducing noise from rotor wake impingement on the wing.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":" 6","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139140941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This experimental investigation is aimed at assessing how the introduction of a cross-wire at the exit of a CD nozzle influences the performance of a supersonic nozzle. The study focuses on cold air jets generated by De Laval nozzles equipped with cross-wires and baseline configurations, particularly at design Mach numbers of 1.5 and 1.75. The investigation involves collecting measurements from the noise field emitted by the cross-wire nozzle with a 2% obstruction at the exit. This passive control approach effectively reduces the occurrence of screech tones in both over-expanded and under-expanded conditions in the azimuthal plane at appropriate operating pressures. Various acoustic parameters, including sound pressure levels (SPL), Strouhal numbers, and the overall sound pressure level spectra (OASPL) are recorded. Schlieren imaging captures images of shock cell patterns, illustrating the impact of shock-associated noise. In comparison to a baseline nozzle, the results demonstrate that a CD nozzle equipped with a cross-wire proves to be a proficient screech tone suppressor, leading to an average reduction of up to 5 dB in OASPL in under-expanded and over-expanded scenarios.
本实验调查旨在评估在 CD 喷嘴出口处引入横丝如何影响超音速喷嘴的性能。研究重点是配备了横丝和基线配置的德拉瓦尔喷嘴产生的冷空气喷流,尤其是在设计马赫数为 1.5 和 1.75 时。调查包括收集出口处有 2% 障碍物的横丝喷嘴发出的噪声场的测量结果。在适当的工作压力下,这种被动控制方法有效地减少了方位面上过扩张和欠扩张条件下尖啸音的出现。记录了各种声学参数,包括声压级 (SPL)、斯特劳哈尔数和总声压级频谱 (OASPL)。Schlieren 成像可捕捉到冲击单元模式的图像,说明冲击相关噪声的影响。结果表明,与基线喷嘴相比,配备了交叉线的 CD 喷嘴可有效抑制尖啸声,在扩展不足和扩展过度的情况下,OASPL 平均可降低 5 分贝。
{"title":"Supersonic jet noise and screech tone suppression using cross-wire","authors":"Kaleeswaran Periyasamy, Kadiresh Parthasarathy Natarajan","doi":"10.1177/1475472x231225628","DOIUrl":"https://doi.org/10.1177/1475472x231225628","url":null,"abstract":"This experimental investigation is aimed at assessing how the introduction of a cross-wire at the exit of a CD nozzle influences the performance of a supersonic nozzle. The study focuses on cold air jets generated by De Laval nozzles equipped with cross-wires and baseline configurations, particularly at design Mach numbers of 1.5 and 1.75. The investigation involves collecting measurements from the noise field emitted by the cross-wire nozzle with a 2% obstruction at the exit. This passive control approach effectively reduces the occurrence of screech tones in both over-expanded and under-expanded conditions in the azimuthal plane at appropriate operating pressures. Various acoustic parameters, including sound pressure levels (SPL), Strouhal numbers, and the overall sound pressure level spectra (OASPL) are recorded. Schlieren imaging captures images of shock cell patterns, illustrating the impact of shock-associated noise. In comparison to a baseline nozzle, the results demonstrate that a CD nozzle equipped with a cross-wire proves to be a proficient screech tone suppressor, leading to an average reduction of up to 5 dB in OASPL in under-expanded and over-expanded scenarios.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"83 7","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139147260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-14DOI: 10.1177/1475472x231206498
Kwang Ho Hur, Basharat Ali Haider, Chang Hyun Sohn
This study investigated the use of trailing edge serrations to reduce the noise generated by axial-flow automotive cooling fans. Three different serration profiles (sinusoidal, rectangular, and triangular) were examined, with the profiles being extended radially along the entire blade length and truncated at half the blade length while keeping the dimensionless wave number k ∗ and wave amplitude 2 h ∗ constant. The simulations employed a hybrid URANS-LES solver for the flow field and Ffowcs Williams-Hawkings analogy for the sound field, corresponding to the maximum volumetric flow rate and fan rotational speed. Acoustic pressure measurements were taken at multiple receivers upstream and downstream of the fan, and the overall sound pressure level was computed based on the results. Furthermore, the study also compared the aerodynamic performance of all serration types with the baseline fan, revealing that the baseline fan was relatively more efficient than their serrated counterparts. Despite the reduced efficiency, the trailing edge serrations offered significant noise reduction benefits of up to 10 dB, making them a promising solution for improving acoustic comfort in automotive cooling systems.
本文研究了利用后缘锯齿来降低轴流汽车冷却风扇产生的噪声。在保持无因次波数k∗和波幅2 h∗不变的情况下,研究了三种不同的锯齿形轮廓(正弦、矩形和三角形),这些轮廓沿整个叶片长度径向延伸,并在叶片长度的一半处截断。流场模拟采用混合URANS-LES求解,声场模拟采用Ffowcs williams - hawkins类比,分别对应最大容积流量和风机转速。在风机上下游多个接收机处进行声压测量,并根据测量结果计算整体声压级。此外,该研究还将所有锯齿型风扇的空气动力学性能与基线风扇进行了比较,发现基线风扇相对于锯齿型风扇效率更高。尽管降低了效率,但后缘齿形提供了高达10 dB的显著降噪效果,使其成为改善汽车冷却系统声学舒适性的有希望的解决方案。
{"title":"Trailing edge serrations for noise control in axial-flow automotive cooling fans","authors":"Kwang Ho Hur, Basharat Ali Haider, Chang Hyun Sohn","doi":"10.1177/1475472x231206498","DOIUrl":"https://doi.org/10.1177/1475472x231206498","url":null,"abstract":"This study investigated the use of trailing edge serrations to reduce the noise generated by axial-flow automotive cooling fans. Three different serration profiles (sinusoidal, rectangular, and triangular) were examined, with the profiles being extended radially along the entire blade length and truncated at half the blade length while keeping the dimensionless wave number k ∗ and wave amplitude 2 h ∗ constant. The simulations employed a hybrid URANS-LES solver for the flow field and Ffowcs Williams-Hawkings analogy for the sound field, corresponding to the maximum volumetric flow rate and fan rotational speed. Acoustic pressure measurements were taken at multiple receivers upstream and downstream of the fan, and the overall sound pressure level was computed based on the results. Furthermore, the study also compared the aerodynamic performance of all serration types with the baseline fan, revealing that the baseline fan was relatively more efficient than their serrated counterparts. Despite the reduced efficiency, the trailing edge serrations offered significant noise reduction benefits of up to 10 dB, making them a promising solution for improving acoustic comfort in automotive cooling systems.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"156 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1177/1475472x231206496
Abhijit Dhamanekar, K Srinivasan
This article explores the acoustic characteristics and the relevant flow features of jets impinging on permeable plates. Noise generated due to the interaction of the jet with permeable plates is compared with jets impinging on an impermeable plate and the corresponding free jet. This study systematically measures various parameters, including pore size, porosity, and pressure drop, to precisely quantify the permeability of the plates using the Forchheimer equation. The focus is on investigating the impact of permeability on noise reduction. An acoustic study is performed by carrying out blow-up and blow-down tests to find the effect of permeability at different nozzle pressure ratios and different nozzle-plate spacings. An extensive directivity study is conducted to find the directionality of acoustic emissions and calculate acoustic power. It is found that the overall sound pressure level is lower for the jets impinging on the permeable plates compared to the impermeable plates in subsonic cases. It is also observed that the insertion of the permeable plates in supersonic jets generates less noise compared to the corresponding free jet. It is found that most of the tones are absent in the case of permeable plates for supersonic jets, whereas the tones are present with lesser amplitude compared to jets impinging on impermeable plates for subsonic and transonic jets. Finally, flow measurement and flow visualization studies are carried out to understand the flow physics responsible for the noise variance. This study illuminates that the passage of flow through the porous plate results in the reduction of wall-jet velocities, thereby suppressing the turbulent mixing noise. The absence of shock oscillations in front of the permeable plate is identified as the cause of the mitigation of impinging tones.
{"title":"Acoustic characteristics of jets impinging on permeable plates","authors":"Abhijit Dhamanekar, K Srinivasan","doi":"10.1177/1475472x231206496","DOIUrl":"https://doi.org/10.1177/1475472x231206496","url":null,"abstract":"This article explores the acoustic characteristics and the relevant flow features of jets impinging on permeable plates. Noise generated due to the interaction of the jet with permeable plates is compared with jets impinging on an impermeable plate and the corresponding free jet. This study systematically measures various parameters, including pore size, porosity, and pressure drop, to precisely quantify the permeability of the plates using the Forchheimer equation. The focus is on investigating the impact of permeability on noise reduction. An acoustic study is performed by carrying out blow-up and blow-down tests to find the effect of permeability at different nozzle pressure ratios and different nozzle-plate spacings. An extensive directivity study is conducted to find the directionality of acoustic emissions and calculate acoustic power. It is found that the overall sound pressure level is lower for the jets impinging on the permeable plates compared to the impermeable plates in subsonic cases. It is also observed that the insertion of the permeable plates in supersonic jets generates less noise compared to the corresponding free jet. It is found that most of the tones are absent in the case of permeable plates for supersonic jets, whereas the tones are present with lesser amplitude compared to jets impinging on impermeable plates for subsonic and transonic jets. Finally, flow measurement and flow visualization studies are carried out to understand the flow physics responsible for the noise variance. This study illuminates that the passage of flow through the porous plate results in the reduction of wall-jet velocities, thereby suppressing the turbulent mixing noise. The absence of shock oscillations in front of the permeable plate is identified as the cause of the mitigation of impinging tones.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136358363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1177/1475472x231199185
David Morata, Dimitri Papamoschou
The effect of external nozzle geometry on the emission of screech tones was studied experimentally. Four conical reflector surfaces, with half-angles ranging from 60° to 90°, were installed around the exit of a round convergent nozzle. The investigation focused on two closely spaced fully-expanded Mach numbers, M j = 1.32 and 1.34. The acoustic far-field was surveyed by a microphone phased array that included a continuously-scanning microphone, the latter enabling high spatial resolution. The isolated jets contained well-known screech mode B and its harmonics. Addition of the reflectors caused significant changes in the modal emission pattern, with tones traditionally linked to mode C occurring at M j = 1.34 but not at M j = 1.32. Tonal components associated with new modes E and F emerge at both Mach numbers when the cone half-angle is 60° or 70°. The noise source distribution generally elongates with decreasing cone angle. Some modes show clear scattering from the reflectors, while others do not. The study underscores the complexity that initial conditions can impart on the modal structure of screech and demonstrates the capability of the continuous-scan beamforming technique in resolving fine features of the source.
{"title":"Influence of nozzle external geometry on the emission of screech tones","authors":"David Morata, Dimitri Papamoschou","doi":"10.1177/1475472x231199185","DOIUrl":"https://doi.org/10.1177/1475472x231199185","url":null,"abstract":"The effect of external nozzle geometry on the emission of screech tones was studied experimentally. Four conical reflector surfaces, with half-angles ranging from 60° to 90°, were installed around the exit of a round convergent nozzle. The investigation focused on two closely spaced fully-expanded Mach numbers, M j = 1.32 and 1.34. The acoustic far-field was surveyed by a microphone phased array that included a continuously-scanning microphone, the latter enabling high spatial resolution. The isolated jets contained well-known screech mode B and its harmonics. Addition of the reflectors caused significant changes in the modal emission pattern, with tones traditionally linked to mode C occurring at M j = 1.34 but not at M j = 1.32. Tonal components associated with new modes E and F emerge at both Mach numbers when the cone half-angle is 60° or 70°. The noise source distribution generally elongates with decreasing cone angle. Some modes show clear scattering from the reflectors, while others do not. The study underscores the complexity that initial conditions can impart on the modal structure of screech and demonstrates the capability of the continuous-scan beamforming technique in resolving fine features of the source.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135480822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.
{"title":"Machine learning methods for multi-rotor UAV structural damage detection based on MEMS sensor","authors":"Yumeng Ma, Faizal Mustapha, Mohamad Ridzwan Ishak, Sharafiz Abdul Rahim, Mazli Mustapha","doi":"10.1177/1475472x231206495","DOIUrl":"https://doi.org/10.1177/1475472x231206495","url":null,"abstract":"Multi-rotor Unmanned Aerial Vehicles (UAVs) have become increasingly important in industries and early detection of structural damage is crucial to prevent unexpected breakdowns, ensure production efficiency, and maintain operational safety. This paper proposes machine learning techniques for detecting damage caused by loosened screws which is not easy founded based on vibration signals. An independent data acquisition device with a Micro Electro Mechanical Systems (MEMS) sensor is designed and fixed onto the multi-rotor UAVs to acquire the vibration data. Four machine learning algorithms, namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree, and Random Forest, are employed for damage detection. The results demonstrate successful utilization of the vibration data from the MEMS sensor for damage detection, with the random forest model outperforming other models with an accuracy of 90.07.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"301 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134975798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}