Makine Öğrenmesi Yöntemleri İle Eğitim Başarısının Tahmini Modeli

IF 1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY Journal of the Faculty of Engineering and Architecture of Gazi University Pub Date : 2023-09-25 DOI:10.24012/dumf.1322273
Deniz ZİLYAS, Atınç YILMAZ
{"title":"Makine Öğrenmesi Yöntemleri İle Eğitim Başarısının Tahmini Modeli","authors":"Deniz ZİLYAS, Atınç YILMAZ","doi":"10.24012/dumf.1322273","DOIUrl":null,"url":null,"abstract":"Günümüzde makine öğrenmesi yöntemleri etkin bir biçimde kullanılarak pek çok alanda yüksek performanslar ve başarılı sonuçlar göstermiştir. Bu nedenle yöntemler, çeşitli sektörlerde son yıllarda daha da yaygınlaşmaya başlamıştır. Makine öğrenmesi modellerinden elde edilebilecek başarılarla birçok sorun öngörülüp çözüme ulaştırılabilir. Çalışmadaki amaç, ortaokul öğrencileri ile yapılan anketten toplanan veriler kullanılarak; eğitim başarı tahminini yapacak bir makine öğrenmesi modeli ortaya koymak ve öğrenciyi etkileyebilecek faktörlerinin önüne geçebilmektir. Anket soruları, öğrencinin başarısına tesir edebilecek etkenler araştırılarak oluşturulmuştur. Çalışma kapsamında, çeşitli ortaokullarda eğitim gören 519 farklı öğrenciden kişisel verilerin korunması kanunu kapsamında 13 sorudan oluşan anket aracılığıyla veri toplanmıştır. Bu veriler hiçbir kurumla paylaşılmamış olup, gizlilik korunmuştur. Veri seti incelenerek bazı manipülasyon, ön işleme, görselleştirme işlemlerinden geçirilmiş; K-En Yakın Komşu (K-NN) , Rastgele Ormanlar (RO) , Lineer Regresyon, Bagged Trees Regression (BTR - Torbalanmış Ağaçlar), Gradient Boosting Regressor (GBM - Gradyen Arttırıcı Regresyon) ve Karar Ağaçları (KA) algoritmaları kullanılmıştır. Çalışmada, veri manipülasyon işlemleri gerçekleştirildikten sonra model kurularak öğrencinin Türkçe notu üzerinden eğitim başarısının tahmini yapılmıştır. Çalışmada, ders seçiminin belirlenmesi, ana dilin Türkçe olması ve eğitim hayatından itibaren her dönem Türkçe dersi ile karşılaşılmasından dolayı Türkçe dersi bağımlı değişken olarak seçilmiştir. Çalışma neticesinde, rastgele orman yöntemi en başarılı yöntem olmuş; algoritmanın performansı 0.88 ve R-Kare değeri 0.98 olarak elde edilmiştir. Yeni girdilerle test edilen model Türkçe notu üretmiştir. Öğrencinin eğitim durumunu etkileyen en önemli faktörler Türkçe notuna bağlı olarak aralarındaki korelasyon ile aile geliri ve ders çalışma saati olarak belirlenmiştir. Etkenler seçilirken model çeşitli senaryolarla defalarca test edilmiştir ve korelasyon ilişkileri hesaplanmıştır.","PeriodicalId":51103,"journal":{"name":"Journal of the Faculty of Engineering and Architecture of Gazi University","volume":"44 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Faculty of Engineering and Architecture of Gazi University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1322273","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Günümüzde makine öğrenmesi yöntemleri etkin bir biçimde kullanılarak pek çok alanda yüksek performanslar ve başarılı sonuçlar göstermiştir. Bu nedenle yöntemler, çeşitli sektörlerde son yıllarda daha da yaygınlaşmaya başlamıştır. Makine öğrenmesi modellerinden elde edilebilecek başarılarla birçok sorun öngörülüp çözüme ulaştırılabilir. Çalışmadaki amaç, ortaokul öğrencileri ile yapılan anketten toplanan veriler kullanılarak; eğitim başarı tahminini yapacak bir makine öğrenmesi modeli ortaya koymak ve öğrenciyi etkileyebilecek faktörlerinin önüne geçebilmektir. Anket soruları, öğrencinin başarısına tesir edebilecek etkenler araştırılarak oluşturulmuştur. Çalışma kapsamında, çeşitli ortaokullarda eğitim gören 519 farklı öğrenciden kişisel verilerin korunması kanunu kapsamında 13 sorudan oluşan anket aracılığıyla veri toplanmıştır. Bu veriler hiçbir kurumla paylaşılmamış olup, gizlilik korunmuştur. Veri seti incelenerek bazı manipülasyon, ön işleme, görselleştirme işlemlerinden geçirilmiş; K-En Yakın Komşu (K-NN) , Rastgele Ormanlar (RO) , Lineer Regresyon, Bagged Trees Regression (BTR - Torbalanmış Ağaçlar), Gradient Boosting Regressor (GBM - Gradyen Arttırıcı Regresyon) ve Karar Ağaçları (KA) algoritmaları kullanılmıştır. Çalışmada, veri manipülasyon işlemleri gerçekleştirildikten sonra model kurularak öğrencinin Türkçe notu üzerinden eğitim başarısının tahmini yapılmıştır. Çalışmada, ders seçiminin belirlenmesi, ana dilin Türkçe olması ve eğitim hayatından itibaren her dönem Türkçe dersi ile karşılaşılmasından dolayı Türkçe dersi bağımlı değişken olarak seçilmiştir. Çalışma neticesinde, rastgele orman yöntemi en başarılı yöntem olmuş; algoritmanın performansı 0.88 ve R-Kare değeri 0.98 olarak elde edilmiştir. Yeni girdilerle test edilen model Türkçe notu üretmiştir. Öğrencinin eğitim durumunu etkileyen en önemli faktörler Türkçe notuna bağlı olarak aralarındaki korelasyon ile aile geliri ve ders çalışma saati olarak belirlenmiştir. Etkenler seçilirken model çeşitli senaryolarla defalarca test edilmiştir ve korelasyon ilişkileri hesaplanmıştır.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习方法训练成功预测模型
如今,机器学习方法通过有效利用,已在许多领域显示出卓越的性能和成功的结果。因此,近年来机器学习方法在各行各业得到了越来越广泛的应用。有了机器学习模型的成功经验,很多问题都可以得到预测和解决。本研究的目的是提出一种机器学习模型,通过对中学生进行调查所收集的数据来预测教育成就,并预防可能影响学生的因素。调查问题是通过调查可能影响学生成功的因素而产生的。在研究范围内,通过一份包含 13 个问题的调查问卷,从 519 名就读于不同中学的不同学生那里收集了数据,这些数据符合个人数据保护法的规定。这些数据未与任何机构共享,并受到保密保护。研究人员对数据集进行了检查,并对其进行了一些处理、预处理和可视化处理;使用了 K-Nearest Neighbour (K-NN)、Random Forests (RF)、Linear Regression、Bagged Trees Regression (BTR)、Gradient Boosting Regressor (GBM) 和 Decision Trees (DTA) 算法。在研究中,在执行数据处理程序后,建立了模型,并根据学生的土耳其语成绩预测教育成就。在研究中,土耳其语课程被选为因变量,这是因为选课的决定性因素、母语是土耳其语以及在教育生活中每学期都会遇到土耳其语课程这一事实。研究结果表明,随机森林法是最成功的方法;该算法的性能为 0.88,R 方值为 0.98。用新输入数据测试的模型得出了土耳其的成绩。影响学生教育状况的最重要因素被确定为家庭收入和学习时间,它们之间的相关性取决于土耳其语成绩。在选择这些因素时,对模型进行了反复测试,并计算了各种情况下的相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
45.50%
发文量
51
审稿时长
6-12 weeks
期刊介绍: Gazi University Journal of the Faculty of Engineering and Architecture; Engineering qualifications described below and in the field of architecture research papers and invited articles by scanning is considered to be Turkish.
期刊最新文献
Makine Öğrenmesi Yöntemleri İle Eğitim Başarısının Tahmini Modeli Dynamic analysis of historıcal masonry arch bridges Zemin güçlendirmede maksimum dayanım için optimum bazalt fiber oranının belirlenmesi Merkez alıcılı güneş kulesi-buhar güç tümleşik sisteminin performans parametrelerinin incelenmesi Sismik dirençlilik ve spektral parametrelerin etkisi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1