Louisa Heidrich, Emanuel Slany, Stephan Scheele, Ute Schmid
{"title":"FairCaipi: A Combination of Explanatory Interactive and Fair Machine Learning for Human and Machine Bias Reduction","authors":"Louisa Heidrich, Emanuel Slany, Stephan Scheele, Ute Schmid","doi":"10.3390/make5040076","DOIUrl":null,"url":null,"abstract":"The rise of machine-learning applications in domains with critical end-user impact has led to a growing concern about the fairness of learned models, with the goal of avoiding biases that negatively impact specific demographic groups. Most existing bias-mitigation strategies adapt the importance of data instances during pre-processing. Since fairness is a contextual concept, we advocate for an interactive machine-learning approach that enables users to provide iterative feedback for model adaptation. Specifically, we propose to adapt the explanatory interactive machine-learning approach Caipi for fair machine learning. FairCaipi incorporates human feedback in the loop on predictions and explanations to improve the fairness of the model. Experimental results demonstrate that FairCaipi outperforms a state-of-the-art pre-processing bias mitigation strategy in terms of the fairness and the predictive performance of the resulting machine-learning model. We show that FairCaipi can both uncover and reduce bias in machine-learning models and allows us to detect human bias.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"46 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5040076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of machine-learning applications in domains with critical end-user impact has led to a growing concern about the fairness of learned models, with the goal of avoiding biases that negatively impact specific demographic groups. Most existing bias-mitigation strategies adapt the importance of data instances during pre-processing. Since fairness is a contextual concept, we advocate for an interactive machine-learning approach that enables users to provide iterative feedback for model adaptation. Specifically, we propose to adapt the explanatory interactive machine-learning approach Caipi for fair machine learning. FairCaipi incorporates human feedback in the loop on predictions and explanations to improve the fairness of the model. Experimental results demonstrate that FairCaipi outperforms a state-of-the-art pre-processing bias mitigation strategy in terms of the fairness and the predictive performance of the resulting machine-learning model. We show that FairCaipi can both uncover and reduce bias in machine-learning models and allows us to detect human bias.