An Evaluative Baseline for Sentence-Level Semantic Division

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine learning and knowledge extraction Pub Date : 2024-01-02 DOI:10.3390/make6010003
Kuangsheng Cai, Zugang Chen, Hengliang Guo, Shaohua Wang, Guoqing Li, Jing Li, Feng Chen, Hang Feng
{"title":"An Evaluative Baseline for Sentence-Level Semantic Division","authors":"Kuangsheng Cai, Zugang Chen, Hengliang Guo, Shaohua Wang, Guoqing Li, Jing Li, Feng Chen, Hang Feng","doi":"10.3390/make6010003","DOIUrl":null,"url":null,"abstract":"Semantic folding theory (SFT) is an emerging cognitive science theory that aims to explain how the human brain processes and organizes semantic information. The distribution of text into semantic grids is key to SFT. We propose a sentence-level semantic division baseline with 100 grids (SSDB-100), the only dataset we are currently aware of that performs a relevant validation of the sentence-level SFT algorithm, to evaluate the validity of text distribution in semantic grids and divide it using classical division algorithms on SSDB-100. In this article, we describe the construction of SSDB-100. First, a semantic division questionnaire with broad coverage was generated by limiting the uncertainty range of the topics and corpus. Subsequently, through an expert survey, 11 human experts provided feedback. Finally, we analyzed and processed the feedback; the average consistency index for the used feedback was 0.856 after eliminating the invalid feedback. SSDB-100 has 100 semantic grids with clear distinctions between the grids, allowing the dataset to be extended using semantic methods.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make6010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic folding theory (SFT) is an emerging cognitive science theory that aims to explain how the human brain processes and organizes semantic information. The distribution of text into semantic grids is key to SFT. We propose a sentence-level semantic division baseline with 100 grids (SSDB-100), the only dataset we are currently aware of that performs a relevant validation of the sentence-level SFT algorithm, to evaluate the validity of text distribution in semantic grids and divide it using classical division algorithms on SSDB-100. In this article, we describe the construction of SSDB-100. First, a semantic division questionnaire with broad coverage was generated by limiting the uncertainty range of the topics and corpus. Subsequently, through an expert survey, 11 human experts provided feedback. Finally, we analyzed and processed the feedback; the average consistency index for the used feedback was 0.856 after eliminating the invalid feedback. SSDB-100 has 100 semantic grids with clear distinctions between the grids, allowing the dataset to be extended using semantic methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
句子级语义划分的评估基线
语义折叠理论(SFT)是一种新兴的认知科学理论,旨在解释人脑如何处理和组织语义信息。将文本划分为语义网格是语义折叠理论的关键。我们提出了一个包含 100 个网格的句子级语义划分基线(SSDB-100),这是我们目前所知的唯一一个对句子级 SFT 算法进行相关验证的数据集,用于评估文本在语义网格中分布的有效性,并在 SSDB-100 上使用经典划分算法进行划分。本文将介绍 SSDB-100 的构建。首先,通过限制主题和语料的不确定性范围,生成了一份覆盖面广的语义划分问卷。随后,通过专家调查,11 位人类专家提供了反馈意见。最后,我们对反馈意见进行了分析和处理;在剔除无效反馈意见后,所用反馈意见的平均一致性指数为 0.856。SSDB-100 有 100 个语义网格,网格之间有明确的区别,因此可以使用语义方法对数据集进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis Machine Learning for an Enhanced Credit Risk Analysis: A Comparative Study of Loan Approval Prediction Models Integrating Mental Health Data A Data Mining Approach for Health Transport Demand Predicting Wind Comfort in an Urban Area: A Comparison of a Regression- with a Classification-CNN for General Wind Rose Statistics An Evaluative Baseline for Sentence-Level Semantic Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1