{"title":"Evaluation of a high-speed hybrid OAM-OFDM-MDM multiplexed coherent FSO system under desert conditions","authors":"Shivaji Sinha, Chakresh Kumar","doi":"10.37190/oa230308","DOIUrl":null,"url":null,"abstract":"To meet the needs of future wireless optical networks, this paper introduces a high-speed, hybrid multiplexed, coherent free-space optical (FSO) communication system that integrates an orbital angular momentum (OAM) multiplexed signal with an orthogonal frequency division multiplexing (OFDM) technique. Two independent QAM polarized beams, each carrying in-phase and quadrature (I/Q) phase 16-QAM-OFDM modulated data, are combined using mode division multiplexing (MDM) to increase the capacity of the proposed system. The reason of choosing OFDM is its capability to support higher data rate, and mitigating intersymbol interference (ISI). The signal is detected using a coherent detection-based digital signal processing (DSP) algorithm at the receiver end. The proposed hybrid FSO system is evaluated in low and heavy dust environments using bit error rate (BER), link distance, optical signal-to-noise ratio (OSNR), and received optical power performance matrices. The simulation results demonstrate the successful transmission of a 120 Gb/s single carrier over the longest link ranges of 1.5 and 0.40 km, respectively, under low and heavy dust weather environments below the signal degradation threshold value (forward error correction (FEC) limit) of BER 2.2 × 10 –3 in strong turbulent conditions.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"22 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/oa230308","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
To meet the needs of future wireless optical networks, this paper introduces a high-speed, hybrid multiplexed, coherent free-space optical (FSO) communication system that integrates an orbital angular momentum (OAM) multiplexed signal with an orthogonal frequency division multiplexing (OFDM) technique. Two independent QAM polarized beams, each carrying in-phase and quadrature (I/Q) phase 16-QAM-OFDM modulated data, are combined using mode division multiplexing (MDM) to increase the capacity of the proposed system. The reason of choosing OFDM is its capability to support higher data rate, and mitigating intersymbol interference (ISI). The signal is detected using a coherent detection-based digital signal processing (DSP) algorithm at the receiver end. The proposed hybrid FSO system is evaluated in low and heavy dust environments using bit error rate (BER), link distance, optical signal-to-noise ratio (OSNR), and received optical power performance matrices. The simulation results demonstrate the successful transmission of a 120 Gb/s single carrier over the longest link ranges of 1.5 and 0.40 km, respectively, under low and heavy dust weather environments below the signal degradation threshold value (forward error correction (FEC) limit) of BER 2.2 × 10 –3 in strong turbulent conditions.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.