Yanling Chen, Lianglun Cheng, Heng Wu, Ziyang Chen, Feng Li
{"title":"Infrared and visible image fusion with deep wavelet-dense network","authors":"Yanling Chen, Lianglun Cheng, Heng Wu, Ziyang Chen, Feng Li","doi":"10.37190/oa230104","DOIUrl":null,"url":null,"abstract":"We propose a high-quality infrared and visible image fusion method based on a deep wavelet-dense network (WT-DenseNet). The WT-DenseNet includes three network layers, the hybrid feature extraction layer, fusion layer, and image reconstruction layer. The hybrid feature extraction layer is composed of a wavelet and dense network. The wavelet network decomposes the feature map of the visible and infrared images into low-frequency and high-frequency components, respectively. The dense network extracts the salient features. A fusion layer is designed to integrate low-frequency and salient features. Finally, the fusion images are outputted by an image reconstruction layer. The experimental results demonstrate that the proposed method can realize high-quality infrared and visible image fusions, and the performance of the proposed method is better than that of the six recently published fusion methods in terms of contrast and detail performance.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa230104","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
We propose a high-quality infrared and visible image fusion method based on a deep wavelet-dense network (WT-DenseNet). The WT-DenseNet includes three network layers, the hybrid feature extraction layer, fusion layer, and image reconstruction layer. The hybrid feature extraction layer is composed of a wavelet and dense network. The wavelet network decomposes the feature map of the visible and infrared images into low-frequency and high-frequency components, respectively. The dense network extracts the salient features. A fusion layer is designed to integrate low-frequency and salient features. Finally, the fusion images are outputted by an image reconstruction layer. The experimental results demonstrate that the proposed method can realize high-quality infrared and visible image fusions, and the performance of the proposed method is better than that of the six recently published fusion methods in terms of contrast and detail performance.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.