Mechanism and control of deformation in gob-side entry with thick and hard roof strata

IF 0.9 4区 材料科学 Q3 Materials Science Journal of The South African Institute of Mining and Metallurgy Pub Date : 2023-10-18 DOI:10.17159/2411-9717/1707/2023
J.S. Guo, L.Q. MaII, I. Ngo
{"title":"Mechanism and control of deformation in gob-side entry with thick and hard roof strata","authors":"J.S. Guo, L.Q. MaII, I. Ngo","doi":"10.17159/2411-9717/1707/2023","DOIUrl":null,"url":null,"abstract":"Deformation of gob-side entries has always been a critical concern for ensuring stability in longwall coal mines. This paper addresses the significant deformation and support challenges that arise in thick and hard roof longwall faces (THRLF) due to dynamic pressure. The study aims to elucidate the characteristics and mechanisms of deformation during the retreat of the longwall face. The research findings indicated that the primary cause of deformation was the combination of advanced abutment stress resulting from longwall face mining and the movement of the lateral roof over the chain pillar. To mitigate this issue, we propose a deformation control method known as cutting off the lateral roof (COLR) over the chain pillar. Simulation results demonstrate a significant reduction in roof stress and deformation of the gob-side entry after implementing the lateral roof-cutting technique. These findings provide valuable guidance for effectively managing deformation in gob-side entries, particularly when dealing with thick and hard roof strata.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":"26 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The South African Institute of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/2411-9717/1707/2023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Deformation of gob-side entries has always been a critical concern for ensuring stability in longwall coal mines. This paper addresses the significant deformation and support challenges that arise in thick and hard roof longwall faces (THRLF) due to dynamic pressure. The study aims to elucidate the characteristics and mechanisms of deformation during the retreat of the longwall face. The research findings indicated that the primary cause of deformation was the combination of advanced abutment stress resulting from longwall face mining and the movement of the lateral roof over the chain pillar. To mitigate this issue, we propose a deformation control method known as cutting off the lateral roof (COLR) over the chain pillar. Simulation results demonstrate a significant reduction in roof stress and deformation of the gob-side entry after implementing the lateral roof-cutting technique. These findings provide valuable guidance for effectively managing deformation in gob-side entries, particularly when dealing with thick and hard roof strata.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厚硬顶板采空区巷道变形机理及控制
采空区巷道变形一直是影响长壁煤矿稳定的关键问题。本文论述了在动压作用下,厚硬顶板长壁工作面产生的显著变形和支护挑战。本研究旨在阐明长壁工作面回撤过程中的变形特征及机理。研究结果表明,变形的主要原因是长壁工作面开采产生的超前支承应力和侧顶板对锚链矿柱的移动共同作用。为了缓解这个问题,我们提出了一种变形控制方法,即切断链柱上方的侧顶(COLR)。模拟结果表明,采用侧切顶板技术后,采空区巷道顶板应力和变形明显减小。这些发现为有效管理采空区巷道的变形提供了有价值的指导,特别是在处理厚而硬的顶板岩层时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
61
审稿时长
4-8 weeks
期刊介绍: The Journal serves as a medium for the publication of high quality scientific papers. This requires that the papers that are submitted for publication are properly and fairly refereed and edited. This process will maintain the high quality of the presentation of the paper and ensure that the technical content is in line with the accepted norms of scientific integrity.
期刊最新文献
A study of different grinding aids for low-energy cement clinker production The needle penetration index for estimating the physico-mechanical properties of pyroclastic rocks Energy efficiency in the South African mining sector: A case study at a coal mine in Mpumalanga Optimization of shape factor by the response surface method, and the effect on sphalerite flotation recovery Mechanical activation and physicochemical factors controlling pyrometallurgical, hydrometallurgical, and electrometallurgical processing of titanium ore: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1