{"title":"Ribosomal protein L8 regulates the expression and splicing pattern of genes associated with cancer-related pathways","authors":"LEILEI XU, GUI YANG, BIN SONG, DONG CHEN, Akbar. Yunus, JIANGTAO CHEN, XIAOGANG YANG, ZHENG TIAN","doi":"10.55730/1300-0152.2666","DOIUrl":null,"url":null,"abstract":"Background/aim: Ribosomal proteins have been shown to perform unique extraribosomal functions in cell apoptosis and other biological processes. Ribosomal protein L8 (RPL8) not only has important nonribosomal regulatory functions but also participates in the oncogenesis and development of tumors. However, the specific biological functions and pathways involved in this process are still unknown. Materials and methods: RPL8 was overexpressed (RPL8-OE) in HeLa cells. MTT assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and regulated alternative splicing events (RASEs) by RPL8-OE, both of which were validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay. Results: RPL8-OE inhibited cell proliferation and promoted cell apoptosis. RPL8 regulated the differential expression of many oncogenic genes and the occurrence of RASEs. Many DEGs and RASE genes (RASGs) were enriched in tumorigenesis and tumor progressionrelated pathways, including angiogenesis, inflammation, and regulation of cell proliferation. RPL8 could regulate the RASGs enriched in the negative regulation of apoptosis, consistent with its proapoptosis function. Furthermore, RPL8 may influence cancer-related DEGs by modulating the alternative splicing of transcription factors. Conclusion: RPL8 might affect the phenotypes of cancer cells by altering the transcriptome profiles, including gene expression and splicing, which provides novel insights into the biological functions of RPL8 in tumor development.","PeriodicalId":23358,"journal":{"name":"Turkish Journal of Biology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0152.2666","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: Ribosomal proteins have been shown to perform unique extraribosomal functions in cell apoptosis and other biological processes. Ribosomal protein L8 (RPL8) not only has important nonribosomal regulatory functions but also participates in the oncogenesis and development of tumors. However, the specific biological functions and pathways involved in this process are still unknown. Materials and methods: RPL8 was overexpressed (RPL8-OE) in HeLa cells. MTT assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and regulated alternative splicing events (RASEs) by RPL8-OE, both of which were validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay. Results: RPL8-OE inhibited cell proliferation and promoted cell apoptosis. RPL8 regulated the differential expression of many oncogenic genes and the occurrence of RASEs. Many DEGs and RASE genes (RASGs) were enriched in tumorigenesis and tumor progressionrelated pathways, including angiogenesis, inflammation, and regulation of cell proliferation. RPL8 could regulate the RASGs enriched in the negative regulation of apoptosis, consistent with its proapoptosis function. Furthermore, RPL8 may influence cancer-related DEGs by modulating the alternative splicing of transcription factors. Conclusion: RPL8 might affect the phenotypes of cancer cells by altering the transcriptome profiles, including gene expression and splicing, which provides novel insights into the biological functions of RPL8 in tumor development.
期刊介绍:
The Turkish Journal of Biology is published electronically 6 times a year by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts concerning all kinds of biological
processes including biochemistry and biosynthesis, physiology and metabolism, molecular genetics, molecular biology,
genomics, proteomics, molecular farming, biotechnology/genetic transformation, nanobiotechnology, bioinformatics
and systems biology, cell and developmental biology, stem cell biology, and reproductive biology. Contribution is open
to researchers of all nationalities.