{"title":"Analysis of Collaborative Assembly in Multi-User Computer-Aided Design","authors":"Kathy Cheng, Alison Olechowski","doi":"10.1115/1.4063759","DOIUrl":null,"url":null,"abstract":"Abstract Cloud-based multi-user computer-aided design (MUCAD) tools have the potential to revolutionize design team collaboration. Previous research focusing on parametric part modeling suggests that teams collaborating through MUCAD are more efficient at producing a CAD model than individual designers. While these studies are enlightening, there is a significant gap in understanding the impact of MUCAD on assembly modeling, despite its crucial role in the design process. Part and assembly models are both defined by parametric relationships, but assembly models lack hierarchical feature dependency; we propose that by modularizing tasks and executing them in parallel, teams can optimize the assembly process in ways not possible with part modelling. Our study aims to examine and compare CAD assembly performance between individuals and virtual collaborative teams using the same cloud MUCAD platform. Through analyzing team communication, workflow, task allocation, and collaboration challenges of teams comprising 1-4 members, we identify factors that contribute to or hinder the success of multi-user CAD teams. Our results show that teams can complete an assembly in less calendar time than a single user, but single users are more efficient on a per-person basis, due to communication and coordination overheads. Notably, pairs exhibit an assembly bonus effect. These findings provide initial insights into the realm of collaborative CAD assembly work, highlighting the potential of MUCAD to enhance the capabilities of modern product design teams.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"26 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063759","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Cloud-based multi-user computer-aided design (MUCAD) tools have the potential to revolutionize design team collaboration. Previous research focusing on parametric part modeling suggests that teams collaborating through MUCAD are more efficient at producing a CAD model than individual designers. While these studies are enlightening, there is a significant gap in understanding the impact of MUCAD on assembly modeling, despite its crucial role in the design process. Part and assembly models are both defined by parametric relationships, but assembly models lack hierarchical feature dependency; we propose that by modularizing tasks and executing them in parallel, teams can optimize the assembly process in ways not possible with part modelling. Our study aims to examine and compare CAD assembly performance between individuals and virtual collaborative teams using the same cloud MUCAD platform. Through analyzing team communication, workflow, task allocation, and collaboration challenges of teams comprising 1-4 members, we identify factors that contribute to or hinder the success of multi-user CAD teams. Our results show that teams can complete an assembly in less calendar time than a single user, but single users are more efficient on a per-person basis, due to communication and coordination overheads. Notably, pairs exhibit an assembly bonus effect. These findings provide initial insights into the realm of collaborative CAD assembly work, highlighting the potential of MUCAD to enhance the capabilities of modern product design teams.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.