Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 Al alloy

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Applications Pub Date : 2023-09-11 DOI:10.2351/7.0001085
Chunliang Yang, Fan Yang, Xiangmeng Meng, Stephen Nugraha Putra, Marcel Bachmann, Michael Rethmeier
{"title":"Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 Al alloy","authors":"Chunliang Yang, Fan Yang, Xiangmeng Meng, Stephen Nugraha Putra, Marcel Bachmann, Michael Rethmeier","doi":"10.2351/7.0001085","DOIUrl":null,"url":null,"abstract":"Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase in the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are analyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verify the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains, that have been solidified and formed previously, from further growth and generates some small cellular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"65 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase in the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are analyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verify the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains, that have been solidified and formed previously, from further growth and generates some small cellular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5754铝合金电磁辅助激光焊接晶粒细化的实验与数值研究
通过实验观察和辅助数值模拟,研究了施加横向振荡磁场对5754铝合金激光束焊接不同类型晶粒细化的影响。扫描电镜结果证明,施加磁场可以减小平均晶支宽度,增加晶支数。塞贝克效应产生的感应涡流与外加磁场之间的相互作用产生了洛伦兹力,这对晶体分支数量的增加是重要的。基于枝晶破碎理论和磁场诱导枝枝增加理论,研究了磁场作用下晶粒尺寸的减小。结合相场法模型和成核和晶粒长大的模拟,分析了磁场的影响。焊接后的晶粒分布和平均晶粒尺寸验证了模型的可靠性。此外,磁场的引入可以增加周期性三维凝固模式的数量。在两段凝固模式的交点处,金属可以再熔化再凝固,这样可以防止先前已经凝固形成的晶粒进一步长大,在新的熔合线上产生一些小的胞状晶粒。磁场增加了这些凝固组织的形成频率,从而促进了这种晶粒细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
期刊最新文献
Experimental evaluation of a WC–Co alloy layer formation process by multibeam-type laser metal deposition with blue diode lasers Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching Investigating the influence of thermal behavior on microstructure during solidification in laser powder bed fusion of AlSi10Mg alloys: A phase-field analysis High-power fiber-coupled diode laser welding of 10-mm thick Inconel 617 superalloy Influence of temperature and beam size on weld track shape in laser powder bed fusion of pure copper using near-infrared laser system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1