Very High-Resolution Satellite Image Registration Based on Self-supervised Deep Learning

Taeheon Kim, Jaewon Hur, Youkyung Han
{"title":"Very High-Resolution Satellite Image Registration Based on Self-supervised Deep Learning","authors":"Taeheon Kim, Jaewon Hur, Youkyung Han","doi":"10.7848/ksgpc.2023.41.4.217","DOIUrl":null,"url":null,"abstract":"고해상도 위성영상 활용을 위해서는 상호등록을 수행하여 영상 간 좌표를 통일하는 과정이 필수적으로 수행되어야 한다. 본 연구에서는 self-supervised learning 방식의 딥러닝 네트워크를 통해 추출된 정합점을 기반으로 고해상도 위성영상 간 좌표를 통일하는 상호등록 방법론을 제안한다. 먼저, 특징점의 전반적인 특성을 학습시키기 위해 Synthetic shape dataset을 이용하여 MagicPoint detector를 구축한다. 다양한 고해상도 원격탐사 오픈소스 데이터를 MagicPoint detector에 입력하여 추출된 특징점을 이용하여 MagicPoint detector를 고도화한다. 고도화된 MagicPoint detector를 이용하여 고해상도 위성영상 내 pseudo-label을 생성하며, 이때 homographic adaptation을 적용하여 다양한 기하학적 환경을 고려한다. pseudo-label과 고해상도 위성영상 데이터를 기반으로 SuperPoint detector를 구축한다. 제안방법을 통해 추출된 정합점을 기반으로 구성된 비선형 변환모델을 이용하여 상호등록을 수행한다. 대전광역시를 대상으로 취득된 KOMPSAT-3 영상을 이용하여 실험한 결과, 제안기법은 다수의 정합점을 중첩영역에 대해 균등하게 추출하였으며, 상호등록 정확도는 RMSE (Root Mean Square Error) 1.563 pixels 그리고 CE90 (Circular Error 90%) 1.971 pixels로 측정되었다. 이를 통해, 제안기법은 고해상도 위성영상 특성을 반영한 정합점을 효과적으로 추출할 수 있어 상호등록 정확도 개선에 이바지할 수 있을 것으로 사료된다.","PeriodicalId":39099,"journal":{"name":"Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7848/ksgpc.2023.41.4.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

고해상도 위성영상 활용을 위해서는 상호등록을 수행하여 영상 간 좌표를 통일하는 과정이 필수적으로 수행되어야 한다. 본 연구에서는 self-supervised learning 방식의 딥러닝 네트워크를 통해 추출된 정합점을 기반으로 고해상도 위성영상 간 좌표를 통일하는 상호등록 방법론을 제안한다. 먼저, 특징점의 전반적인 특성을 학습시키기 위해 Synthetic shape dataset을 이용하여 MagicPoint detector를 구축한다. 다양한 고해상도 원격탐사 오픈소스 데이터를 MagicPoint detector에 입력하여 추출된 특징점을 이용하여 MagicPoint detector를 고도화한다. 고도화된 MagicPoint detector를 이용하여 고해상도 위성영상 내 pseudo-label을 생성하며, 이때 homographic adaptation을 적용하여 다양한 기하학적 환경을 고려한다. pseudo-label과 고해상도 위성영상 데이터를 기반으로 SuperPoint detector를 구축한다. 제안방법을 통해 추출된 정합점을 기반으로 구성된 비선형 변환모델을 이용하여 상호등록을 수행한다. 대전광역시를 대상으로 취득된 KOMPSAT-3 영상을 이용하여 실험한 결과, 제안기법은 다수의 정합점을 중첩영역에 대해 균등하게 추출하였으며, 상호등록 정확도는 RMSE (Root Mean Square Error) 1.563 pixels 그리고 CE90 (Circular Error 90%) 1.971 pixels로 측정되었다. 이를 통해, 제안기법은 고해상도 위성영상 특성을 반영한 정합점을 효과적으로 추출할 수 있어 상호등록 정확도 개선에 이바지할 수 있을 것으로 사료된다.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自监督深度学习的高分辨率卫星图像配准
为了使用高清晰度卫星影像,必须进行相互登记,统一影像间坐标的过程。本研究提出一种以self-supervised learning方式的深度学习网络提取的整合点为基础,统一高清晰度卫星影像间坐标的相互注册方法论。首先,利用Synthetic shape dataset构建MagicPoint detector,以学习特征点的整体特性。将多种高清晰度遥感开源数据输入MagicPoint detector,利用提取的特征点升级MagicPoint detector。利用高度化的MagicPoint detector生成高清晰度卫星影像内的pseudo-label,这时应用homographic adaptation考虑多种几何环境。基于pseudo-label和高清晰度卫星图像数据构建SuperPoint detector。利用以提案方法提取的整合点为基础组成的非线性变换模型进行相互注册。在大田广域市使用KOMPSAT-3影像进行实验的结果显示,提案技术均匀地提取了多个匹配点,相互注册的准确度分别为RMSE (Root Mean Square Error) 1.563 pixels和CE90 (Circular Error 90%) 1.971 pixels。通过这种方法,提案技术可以有效地提取出反映高清晰度卫星影像特性的整合点,对改善相互登记的准确度做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography
Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography Earth and Planetary Sciences-Earth and Planetary Sciences (all)
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Multi-class Semantic Segmentation Using CAS500-1 Imagery for Change Detection Using a Teachable Machine for Detecting of Underground Facilities in Ground Penetrating Radar Application of Excel to Automate Sampling for Performance Review of Underground Facilities Very High-Resolution Satellite Image Registration Based on Self-supervised Deep Learning Road Alignment History Management Model Using Geographic Coordinates of the Station
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1