Design of a battery charging system fed by thermoelectric generator panels using MPPT techniques

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electrical Engineering-elektrotechnicky Casopis Pub Date : 2023-10-01 DOI:10.2478/jee-2023-0043
Mustafa F. Mohammed, Mohammed A. Qasim
{"title":"Design of a battery charging system fed by thermoelectric generator panels using MPPT techniques","authors":"Mustafa F. Mohammed, Mohammed A. Qasim","doi":"10.2478/jee-2023-0043","DOIUrl":null,"url":null,"abstract":"Abstract Thermal energy is a renewable energy source to generate electrical energy that is not fully developed. One device that converts thermal energy into electrical power is a thermoelectric generator (TEG). TEGs are available as modules of various sizes and voltage levels. This paper is about the design of a battery charging system powered by a TEG panel. The TEG panel is implemented using 150 TEG modules interconnected in series and parallel. Its power is transferred to a battery using two stages of DC/DC converters. The 1 st stage is a Lou converter that is used for maximum power point tracking (MPPT) by a referenced perturb and observe (referenced P&O) algorithm. The 2 nd stage is a bidirectional converter based on buck-boost modes of operation. The system is used to charge a 9 V 1.2 Ah battery. The proposed MPPT algorithm’s performance is compared with a traditional P&O algorithm. The TEG panel provided 27.5 W at a Δ T of 30 0 C. The designed system is simulated in MATLAB SIMULINK.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"2019 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jee-2023-0043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Thermal energy is a renewable energy source to generate electrical energy that is not fully developed. One device that converts thermal energy into electrical power is a thermoelectric generator (TEG). TEGs are available as modules of various sizes and voltage levels. This paper is about the design of a battery charging system powered by a TEG panel. The TEG panel is implemented using 150 TEG modules interconnected in series and parallel. Its power is transferred to a battery using two stages of DC/DC converters. The 1 st stage is a Lou converter that is used for maximum power point tracking (MPPT) by a referenced perturb and observe (referenced P&O) algorithm. The 2 nd stage is a bidirectional converter based on buck-boost modes of operation. The system is used to charge a 9 V 1.2 Ah battery. The proposed MPPT algorithm’s performance is compared with a traditional P&O algorithm. The TEG panel provided 27.5 W at a Δ T of 30 0 C. The designed system is simulated in MATLAB SIMULINK.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MPPT技术的热电发电板电池充电系统设计
热能是一种可再生能源,用以产生尚未充分开发的电能。一种将热能转化为电能的装置是热电发电机(TEG)。teg可作为各种尺寸和电压等级的模块。本文设计了一种由TEG面板供电的电池充电系统。TEG面板由150个TEG模块串联和并联实现。它的电力通过两级DC/DC转换器传输到电池。第一级是一个低电平转换器,通过参考摄动和观察(参考P&O)算法用于最大功率点跟踪(MPPT)。第二级是基于降压-升压工作模式的双向变换器。该系统用于充电9 V 1.2 Ah电池。将该算法的性能与传统的P&O算法进行了比较。TEG面板在Δ温度为30℃时提供27.5 W的功率,并在MATLAB SIMULINK中进行了系统仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical Engineering-elektrotechnicky Casopis
Journal of Electrical Engineering-elektrotechnicky Casopis 工程技术-工程:电子与电气
CiteScore
1.70
自引率
12.50%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising. -Automation and Control- Computer Engineering- Electronics and Microelectronics- Electro-physics and Electromagnetism- Material Science- Measurement and Metrology- Power Engineering and Energy Conversion- Signal Processing and Telecommunications
期刊最新文献
Elementary design and analysis of QCA-based T-flipflop for nanocomputing Model-free predictive current control of Syn-RM based on time delay estimation approach Design of a battery charging system fed by thermoelectric generator panels using MPPT techniques Methods of computer modeling of electromagnetic field propagation in urban scenarios for Internet of Things Precision of sinewave amplitude estimation in the presence of additive noise and quantization error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1