{"title":"The Many Forms of Co-kriging: A Diversity of Multivariate Spatial Estimators","authors":"Peter A. Dowd, Eulogio Pardo-Igúzquiza","doi":"10.1007/s11004-023-10104-7","DOIUrl":null,"url":null,"abstract":"Abstract In this expository review paper, we show that co-kriging, a widely used geostatistical multivariate optimal linear estimator, has a diverse range of extensions that we have collected and illustrated to show the potential of this spatial interpolator. In the context of spatial stochastic processes, this paper covers scenarios including increasing the spatial resolution of a spatial variable (downscaling), solving inverse problems, estimating directional derivatives, and spatial interpolation taking boundary conditions into account. All these spatial interpolators are optimal linear estimators in the sense of being unbiased and minimising the variance of the estimation error.","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"43 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11004-023-10104-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this expository review paper, we show that co-kriging, a widely used geostatistical multivariate optimal linear estimator, has a diverse range of extensions that we have collected and illustrated to show the potential of this spatial interpolator. In the context of spatial stochastic processes, this paper covers scenarios including increasing the spatial resolution of a spatial variable (downscaling), solving inverse problems, estimating directional derivatives, and spatial interpolation taking boundary conditions into account. All these spatial interpolators are optimal linear estimators in the sense of being unbiased and minimising the variance of the estimation error.
期刊介绍:
Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.