{"title":"Generation and study of the synthetic brain electron microscopy dataset for segmentation purpose","authors":"N.A. Sokolov, E.P. Vasiliev, A.A. Getmanskaya","doi":"10.18287/-6179-co-1273","DOIUrl":null,"url":null,"abstract":"Advanced microscopy technologies such as electron microscopy have opened up a new field of vision for biomedical researchers. The use of artificial intelligence methods for processing EM data is largely difficult due to the small amount of annotated data at the training stage. Therefore, we add synthetic images to an annotated real EM dataset or use a fully synthetic training dataset. In this work, we present an algorithm for the synthesis of 6 types of organelles. Based on the EPFL dataset, a training set of 1161 real fragments 256×256 (ORG) and 2000 synthetic ones (SYN), as well as their combination (MIX), were generated. The experiment of training models for 6, 5-classes and binary segmentation showed that, despite the imperfections of synthetics, training on a mixed (MIX) dataset gave a significant increase (about 0.1) in the Dice metric for 6 and 5 and same results at binary. The synthetic data strategy gives annotations for free, but shifts the effort to producing sufficiently realistic images.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"14 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/-6179-co-1273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced microscopy technologies such as electron microscopy have opened up a new field of vision for biomedical researchers. The use of artificial intelligence methods for processing EM data is largely difficult due to the small amount of annotated data at the training stage. Therefore, we add synthetic images to an annotated real EM dataset or use a fully synthetic training dataset. In this work, we present an algorithm for the synthesis of 6 types of organelles. Based on the EPFL dataset, a training set of 1161 real fragments 256×256 (ORG) and 2000 synthetic ones (SYN), as well as their combination (MIX), were generated. The experiment of training models for 6, 5-classes and binary segmentation showed that, despite the imperfections of synthetics, training on a mixed (MIX) dataset gave a significant increase (about 0.1) in the Dice metric for 6 and 5 and same results at binary. The synthetic data strategy gives annotations for free, but shifts the effort to producing sufficiently realistic images.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.