{"title":"Method of multilayer object sectioning based on a light scattering model","authors":"S.D. Bazhitov, A.V. Larichev, A.V. Razgulin, T.E. Romanenko","doi":"10.18287/2412-6179-co-1266","DOIUrl":null,"url":null,"abstract":"We discuss a problem of reconstructing (sectioning) multilayer object images in observed images obtained by focusing the imaging system on each layer and containing spurious blurry images of neighboring layers. The blurring model used describes a physical process of incoherent light scattering in the Fresnel approximation with a priori unknown parameters of the point spread function. We propose a method of \"Boundary separation\" of sectioning, which combines the use of a physical blur model with modern methods of blur estimating and edge detection. The results of testing the \"Boundary separation\" method on the data of physical experiments with different-scale model multilayer objects are analyzed and compared with the existing methods for solving the optical sectioning problem. It is concluded that the method is most effective on multilayer objects with clearly defined boundaries, on which the method has demonstrated almost complete restoration of the desired layers.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"163 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss a problem of reconstructing (sectioning) multilayer object images in observed images obtained by focusing the imaging system on each layer and containing spurious blurry images of neighboring layers. The blurring model used describes a physical process of incoherent light scattering in the Fresnel approximation with a priori unknown parameters of the point spread function. We propose a method of "Boundary separation" of sectioning, which combines the use of a physical blur model with modern methods of blur estimating and edge detection. The results of testing the "Boundary separation" method on the data of physical experiments with different-scale model multilayer objects are analyzed and compared with the existing methods for solving the optical sectioning problem. It is concluded that the method is most effective on multilayer objects with clearly defined boundaries, on which the method has demonstrated almost complete restoration of the desired layers.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.