{"title":"Energy, exergy, and economic analyses and optimization of a deethanizer tower of a petrochemical plant","authors":"Mingguang Yao","doi":"10.1515/cppm-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract The distillation tower’s reboiler is one of the largest energy consumers in petrochemical facilities, and reducing its energy consumption is a crucial issue. This study proposes two optimal methods, namely Direct Vapor Recompression (DVR) and External Vapor Recompression (EVR), to reduce the consumption of cold and hot utilities in a petrochemical deethanizer tower. The Pars petrochemical in Iran is taken as a case study, and the proposed methods are compared with the base case using energy, exergy, and economic approaches, simulated through Aspen HYSYS software in the steady-state design conditions. Exergy analysis reveals that the EVR and DVR methods reduce the exergy destruction of the deethanizer tower by about 70.06 % and 67.29 %, respectively, compared to the base case. Moreover, the EVR method allows for complete recycling of low-pressure vapor, reducing the total exergy destruction rate from 0.871 to 0.261 GJ/t ethane . The feed separation cost for the base case, DVR, and EVR are estimated to be around 28 $/kg feed , 21.57 $/kg feed , and 21.14 $/kg feed , respectively. The EVR method results in reduced utility and ethane separation cost rates from 5.153 to 3.274 $/t ethane and 17.64 to 15.78 $/year. Overall, the findings suggest that both DVR and EVR methods are effective in reducing the energy consumption and costs associated with deethanizer tower operations. Moreover, real-time optimization techniques can be developed to monitor and adjust the deethanizer tower’s operating parameters, such as feed flow rate, reboiler duty, and reflux ratio.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The distillation tower’s reboiler is one of the largest energy consumers in petrochemical facilities, and reducing its energy consumption is a crucial issue. This study proposes two optimal methods, namely Direct Vapor Recompression (DVR) and External Vapor Recompression (EVR), to reduce the consumption of cold and hot utilities in a petrochemical deethanizer tower. The Pars petrochemical in Iran is taken as a case study, and the proposed methods are compared with the base case using energy, exergy, and economic approaches, simulated through Aspen HYSYS software in the steady-state design conditions. Exergy analysis reveals that the EVR and DVR methods reduce the exergy destruction of the deethanizer tower by about 70.06 % and 67.29 %, respectively, compared to the base case. Moreover, the EVR method allows for complete recycling of low-pressure vapor, reducing the total exergy destruction rate from 0.871 to 0.261 GJ/t ethane . The feed separation cost for the base case, DVR, and EVR are estimated to be around 28 $/kg feed , 21.57 $/kg feed , and 21.14 $/kg feed , respectively. The EVR method results in reduced utility and ethane separation cost rates from 5.153 to 3.274 $/t ethane and 17.64 to 15.78 $/year. Overall, the findings suggest that both DVR and EVR methods are effective in reducing the energy consumption and costs associated with deethanizer tower operations. Moreover, real-time optimization techniques can be developed to monitor and adjust the deethanizer tower’s operating parameters, such as feed flow rate, reboiler duty, and reflux ratio.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.