Temperature optimization model to inhibit zero-order kinetic reactions

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2024-07-05 DOI:10.1515/cppm-2023-0101
Januardi Januardi, Aditya Sukma Nugraha
{"title":"Temperature optimization model to inhibit zero-order kinetic reactions","authors":"Januardi Januardi, Aditya Sukma Nugraha","doi":"10.1515/cppm-2023-0101","DOIUrl":null,"url":null,"abstract":"Abstract Originally, the Arrhenius parameters were used to estimate the rate of chemical reactions. This article aims to develop the optimal temperature to inhibit specific zero-order kinetic reactions. The model extends the use of the Arrhenius equation and heat capacity modeling to derive the optimal temperature solution. Specifically, the Arrhenius equation, which connects temperature to reaction rates, and the heat equation are formulated to create a comprehensive heat accumulation model. Analytical modeling is utilized through a derivative process to provide optimization. According to a case study of carotene oxidation, the derivative solution proposes −1.73 °C and can extend the reaction time by 206,160.29 days compared to a solution with no temperature change. The derivative solution also offers higher advantages in practical application than setting the lowest temperature limit due to the high initial energy requirement. The temperature derivative solution exhibits a global optimum property because of its high heat accumulation and slower kinetic reactions. These slower kinetic reactions can prevent reactant substances from deteriorating, making them valuable for maintaining a chemical’s shelf life. The temperature solutions offer valuable insights for devising an effective temperature strategy to inhibit specific chemical processes and verifying the relationship between temperature and heat accumulation with curvature.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Originally, the Arrhenius parameters were used to estimate the rate of chemical reactions. This article aims to develop the optimal temperature to inhibit specific zero-order kinetic reactions. The model extends the use of the Arrhenius equation and heat capacity modeling to derive the optimal temperature solution. Specifically, the Arrhenius equation, which connects temperature to reaction rates, and the heat equation are formulated to create a comprehensive heat accumulation model. Analytical modeling is utilized through a derivative process to provide optimization. According to a case study of carotene oxidation, the derivative solution proposes −1.73 °C and can extend the reaction time by 206,160.29 days compared to a solution with no temperature change. The derivative solution also offers higher advantages in practical application than setting the lowest temperature limit due to the high initial energy requirement. The temperature derivative solution exhibits a global optimum property because of its high heat accumulation and slower kinetic reactions. These slower kinetic reactions can prevent reactant substances from deteriorating, making them valuable for maintaining a chemical’s shelf life. The temperature solutions offer valuable insights for devising an effective temperature strategy to inhibit specific chemical processes and verifying the relationship between temperature and heat accumulation with curvature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制零阶动力学反应的温度优化模型
摘要 阿伦尼乌斯参数最初用于估算化学反应的速率。本文旨在开发抑制特定零阶动力学反应的最佳温度。该模型扩展了阿伦尼乌斯方程和热容量模型的使用,从而得出最佳温度解决方案。具体来说,将温度与反应速率联系起来的阿伦尼乌斯方程和热量方程被用来建立一个综合的热量积累模型。分析模型通过导数过程进行优化。根据胡萝卜素氧化的案例研究,与温度不变的解决方案相比,导数解决方案建议温度为-1.73 °C,可将反应时间延长 206160.29 天。由于初始能量要求较高,导数方案在实际应用中也比设定最低温度限制具有更高的优势。温度导数溶液具有全局最优特性,因为其热量积累高,动力学反应速度较慢。这些较慢的动力学反应可以防止反应物质变质,因此对保持化学品的保质期很有价值。温度解决方案为设计有效的温度策略以抑制特定化学过程以及验证温度和热量积累与曲率之间的关系提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Layouts and tips for a typical final-year chemical engineering graduation project A parametric study on syngas production by adding CO2 and CH4 on steam gasification of biomass system using ASPEN Plus Temperature optimization model to inhibit zero-order kinetic reactions Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1