Performance evaluation of underwater vision systems

IF 1.1 Q4 OPTICS Computer Optics Pub Date : 2023-10-01 DOI:10.18287/2412-6179-co-1262
V.Y. Kolyuchkin, N.M. Kostylev, Y.S. Gulina
{"title":"Performance evaluation of underwater vision systems","authors":"V.Y. Kolyuchkin, N.M. Kostylev, Y.S. Gulina","doi":"10.18287/2412-6179-co-1262","DOIUrl":null,"url":null,"abstract":"The article describes a methodology for performance evaluation of vision systems for remotely operated underwater vehicles. The methodology is based on a system approach and uses mathematical models of the aqueous medium where an optical signal propagates, the underwater object image registration system, and the mathematical model of the human visual system. The detection and recognition probabilities of underwater object image at a given registration range are used as performance evaluation indicators of underwater vision systems. The mathematical model of the aqueous medium developed by the authors allows quantitative evaluation of the influence of backscattering interference arising during objects illumination on the underwater vision system performance. The results of numerical experiments presented in the paper illustrate the possibility of using the proposed technique to optimize the underwater object image registration system parameters in order to achieve the required values of detection or recognition probabilities at the given ranges.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"51 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The article describes a methodology for performance evaluation of vision systems for remotely operated underwater vehicles. The methodology is based on a system approach and uses mathematical models of the aqueous medium where an optical signal propagates, the underwater object image registration system, and the mathematical model of the human visual system. The detection and recognition probabilities of underwater object image at a given registration range are used as performance evaluation indicators of underwater vision systems. The mathematical model of the aqueous medium developed by the authors allows quantitative evaluation of the influence of backscattering interference arising during objects illumination on the underwater vision system performance. The results of numerical experiments presented in the paper illustrate the possibility of using the proposed technique to optimize the underwater object image registration system parameters in order to achieve the required values of detection or recognition probabilities at the given ranges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水下视觉系统性能评价
本文介绍了一种用于遥控水下航行器视觉系统性能评估的方法。该方法基于系统方法,并使用光信号传播的水介质的数学模型、水下物体图像配准系统和人类视觉系统的数学模型。将给定配准范围内水下目标图像的检测和识别概率作为水下视觉系统的性能评价指标。作者建立的水介质数学模型可以定量评价物体照明过程中产生的后向散射干扰对水下视觉系统性能的影响。数值实验结果表明,该方法可用于优化水下目标图像配准系统参数,以在给定范围内达到所需的检测或识别概率值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
期刊最新文献
Six-wave interaction with double wavefront reversal in multimode waveguides with Kerr and thermal nonlinearities Generation and study of the synthetic brain electron microscopy dataset for segmentation purpose Gradient method for designing cascaded DOEs and its application in the problem of classifying handwritten digits Method of multilayer object sectioning based on a light scattering model Investigation of polarization transformations performed with a refractive bi-conical axicon using the FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1