Development of River Flow and Water Quality Using IOT-based Smart Buoys Environment Monitoring System

Subhan Fahmi Nasution, Harmadi Harmadi, Suryadi Suryadi, Bambang Widiyatmoko
{"title":"Development of River Flow and Water Quality Using IOT-based Smart Buoys Environment Monitoring System","authors":"Subhan Fahmi Nasution, Harmadi Harmadi, Suryadi Suryadi, Bambang Widiyatmoko","doi":"10.25077/jif.16.1.1-12.2024","DOIUrl":null,"url":null,"abstract":"Efficient and accurate river water quality monitoring is needed to support laboratory testing based on on-site sampling. Therefore, we have developed a monitoring system for river flow and water quality using sensor-equipped buoys and the Internet of Things (IoT) concept. An ESP32 NodeMCU microcontroller integrated with WiFi and compatible with Arduino IDE is used in the system. The buoy is equipped with GPS to determine the position and flow speed and sensors to measure water quality parameters of pH and temperature. Data on position, flow velocity, and water quality parameters are transmitted over a WiFi network using the MQTT protocol. The data is recorded by the buoy and uploaded and displayed on the adafruit.io platform. Positioning was done by comparing the values displayed on the Neo-6M GPS with the Maps application on the smartphone. The results show that the GPS coordinate values are accurate. The water quality parameter values obtained have an error rate of 3.3% for the pH sensor and 1.02% for the temperature sensor. Thus, the system we have developed has the potential to be used as a substitute for field sampling-based river water quality monitoring systems.","PeriodicalId":52720,"journal":{"name":"JIF Jurnal Ilmu Fisika","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIF Jurnal Ilmu Fisika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jif.16.1.1-12.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and accurate river water quality monitoring is needed to support laboratory testing based on on-site sampling. Therefore, we have developed a monitoring system for river flow and water quality using sensor-equipped buoys and the Internet of Things (IoT) concept. An ESP32 NodeMCU microcontroller integrated with WiFi and compatible with Arduino IDE is used in the system. The buoy is equipped with GPS to determine the position and flow speed and sensors to measure water quality parameters of pH and temperature. Data on position, flow velocity, and water quality parameters are transmitted over a WiFi network using the MQTT protocol. The data is recorded by the buoy and uploaded and displayed on the adafruit.io platform. Positioning was done by comparing the values displayed on the Neo-6M GPS with the Maps application on the smartphone. The results show that the GPS coordinate values are accurate. The water quality parameter values obtained have an error rate of 3.3% for the pH sensor and 1.02% for the temperature sensor. Thus, the system we have developed has the potential to be used as a substitute for field sampling-based river water quality monitoring systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于物联网的智能浮标环境监测系统的河流流量和水质开发
为了支持基于现场采样的实验室检测,需要高效、准确的河流水质监测。因此,我们开发了一个监测河流流量和水质的系统,使用配备传感器的浮标和物联网(IoT)概念。系统采用ESP32 NodeMCU微控制器,集成WiFi,兼容Arduino IDE。浮标配有GPS来确定位置和流速,以及传感器来测量pH和温度等水质参数。位置、流速和水质参数的数据使用MQTT协议通过WiFi网络传输。这些数据被浮标记录下来,上传并显示在水果上。io平台。定位是通过比较Neo-6M GPS上显示的值和智能手机上的地图应用程序来完成的。结果表明,GPS定座值是准确的。得到的水质参数值,pH传感器的误差率为3.3%,温度传感器的误差率为1.02%。因此,我们开发的系统有可能被用作以实地采样为基础的河流水质监测系统的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
6 weeks
期刊最新文献
Development of River Flow and Water Quality Using IOT-based Smart Buoys Environment Monitoring System Particle Size Improvement and Layer Absorption of Metil Halida MAPbI3 Perovskite Doping Phenethylammonium Iodide (PEAI) Efficiency at Maximum Power of Endoreversible Quantum Otto Engine with Partial Thermalization in 3D Harmonic Potential Wind Gust Parameterization Assessment under Convective and Non-convective Events: A Case Study at the Kertajati International Airport An Analysis of the Schrodinger Equation Model for the Distribution Rate of Stock Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1