A Deep LSTM-RNN Classification Method for Covid-19 Twitter Review Based on Sentiment Analysis

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Scalable Computing-Practice and Experience Pub Date : 2023-09-10 DOI:10.12694/scpe.v24i3.2138
Jatla Srikanth, Avula Damodaram Shanmugam
{"title":"A Deep LSTM-RNN Classification Method for Covid-19 Twitter Review Based on Sentiment Analysis","authors":"Jatla Srikanth, Avula Damodaram Shanmugam","doi":"10.12694/scpe.v24i3.2138","DOIUrl":null,"url":null,"abstract":"In today’s world, advanced internet technologies have significantly increased people’s affinity towards social networks to stay updated on current events and communicate with others residing in different cities. Social opinion analyses helped determine the optimal public health response during the COVID-19 pandemic. Analysis of articulating tweets from Twitter can reveal the public’s perceptions of social distance. Sentiment Analysis is used for classifying text data and analyzing people’s emotions. The proposed work uses LSTM-RNN with the SMOTE method for categorizing Twitter data. The suggested approach uses increased characteristics weighted by attention layers and an LSTM-RNN-based network as its foundation. This method computes the advantage of an improved information transformation framework through the attention mechanism compared to existing BI-LSTM and LSTM models. A combination of four publicly accessible class labels such as happy, sad, neutral, and angry, is analyzed. The message of tweets is analyzed for polarization and subjectivity using TextBlob, VADER (Valence Aware Dictionary for Sentiment Reasoning), and SentiWordNet. The model has been successfully built and evaluated using two feature extraction methods, TF-IDF (Term Frequency-Inverse Document Frequency) and Bag of Words (BoW). Compared to the previous methodologies, the suggested deep learning model improved considerably in performance measures, including accuracy, precision, and recall. This demonstrates how effective and practical the recommended deep learning strategy is and how simple it is to employ for sentiment categorization of COVID-19 reviews. The proposed method achieves 97% accuracy in classifying the text whereas, among existing Bi-LSTM, achieves 88% maximum in the text classification.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"18 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In today’s world, advanced internet technologies have significantly increased people’s affinity towards social networks to stay updated on current events and communicate with others residing in different cities. Social opinion analyses helped determine the optimal public health response during the COVID-19 pandemic. Analysis of articulating tweets from Twitter can reveal the public’s perceptions of social distance. Sentiment Analysis is used for classifying text data and analyzing people’s emotions. The proposed work uses LSTM-RNN with the SMOTE method for categorizing Twitter data. The suggested approach uses increased characteristics weighted by attention layers and an LSTM-RNN-based network as its foundation. This method computes the advantage of an improved information transformation framework through the attention mechanism compared to existing BI-LSTM and LSTM models. A combination of four publicly accessible class labels such as happy, sad, neutral, and angry, is analyzed. The message of tweets is analyzed for polarization and subjectivity using TextBlob, VADER (Valence Aware Dictionary for Sentiment Reasoning), and SentiWordNet. The model has been successfully built and evaluated using two feature extraction methods, TF-IDF (Term Frequency-Inverse Document Frequency) and Bag of Words (BoW). Compared to the previous methodologies, the suggested deep learning model improved considerably in performance measures, including accuracy, precision, and recall. This demonstrates how effective and practical the recommended deep learning strategy is and how simple it is to employ for sentiment categorization of COVID-19 reviews. The proposed method achieves 97% accuracy in classifying the text whereas, among existing Bi-LSTM, achieves 88% maximum in the text classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于情感分析的Covid-19 Twitter评论深度LSTM-RNN分类方法
在当今世界,先进的互联网技术大大增加了人们对社交网络的亲和力,以了解最新的时事,并与居住在不同城市的其他人交流。社会舆论分析有助于确定COVID-19大流行期间的最佳公共卫生应对措施。分析Twitter上的清晰推文可以揭示公众对社会距离的看法。情感分析用于对文本数据进行分类,分析人们的情绪。提出的工作使用LSTM-RNN和SMOTE方法对Twitter数据进行分类。所建议的方法使用由注意层加权的增加特征和基于lstm - rnn的网络作为基础。该方法通过注意机制计算改进的信息转换框架相对于现有BI-LSTM和LSTM模型的优势。分析了四个可公开访问的类标签的组合,如快乐、悲伤、中性和愤怒。使用TextBlob、VADER (Valence - Aware Dictionary for Sentiment Reasoning)和SentiWordNet对推文信息进行极化和主观性分析。使用TF-IDF (Term Frequency- inverse Document Frequency)和BoW两种特征提取方法成功地构建了该模型并对其进行了评估。与之前的方法相比,建议的深度学习模型在性能指标上有了很大的提高,包括准确性、精度和召回率。这证明了推荐的深度学习策略的有效性和实用性,以及将其用于COVID-19评论的情感分类是多么简单。该方法对文本的分类准确率达到97%,而在现有的Bi-LSTM中,对文本的分类准确率最高达到88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
期刊最新文献
A Deep LSTM-RNN Classification Method for Covid-19 Twitter Review Based on Sentiment Analysis Flexible English Learning Platform using Collaborative Cloud-Fog-Edge Networking Computer Malicious Code Signal Detection based on Big Data Technology Analyzing Spectator Emotions and Behaviors at Live Sporting Events using Computer Vision and Sentiment Analysis Techniques Spacecraft Test Data Integration Management Technology based on Big Data Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1