A Method for Online Monitoring Data Release of Composite Submarine Cable Based on Horizontal Federated Learning

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Scalable Computing-Practice and Experience Pub Date : 2023-09-10 DOI:10.12694/scpe.v24i3.2275
Xinli Lao, Jiajian Zhang, Chuanlian Gao, Huakun Deng, Yanlei Wei, Zhenzhong Liu
{"title":"A Method for Online Monitoring Data Release of Composite Submarine Cable Based on Horizontal Federated Learning","authors":"Xinli Lao, Jiajian Zhang, Chuanlian Gao, Huakun Deng, Yanlei Wei, Zhenzhong Liu","doi":"10.12694/scpe.v24i3.2275","DOIUrl":null,"url":null,"abstract":"Conventional online composite submarine cable monitoring data release mostly adopts the method and principle of blockchain dynamic zoning consensus. In the data release process, there are omissions, and it takes a long time to complete the task, which reduces the timeliness of online composite submarine cable monitoring data release. Based on this, a new data publishing method is proposed by introducing horizontal federation learning. First, the online monitoring data of composite submarine cables are collected and preprocessed to eliminate the high-frequency capacitive effect of submarine cables. Secondly, manage composite submarine cable data nodes, transform the status relationship of data nodes, and ensure the quality of subsequent data release. A horizontal federation learning model is established to design the online monitoring data release process. The experimental results show that the new data release method is highly feasible. With the increasing online monitoring data of composite submarine cables, the time required for data release is short, and the timeliness is high.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"17 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional online composite submarine cable monitoring data release mostly adopts the method and principle of blockchain dynamic zoning consensus. In the data release process, there are omissions, and it takes a long time to complete the task, which reduces the timeliness of online composite submarine cable monitoring data release. Based on this, a new data publishing method is proposed by introducing horizontal federation learning. First, the online monitoring data of composite submarine cables are collected and preprocessed to eliminate the high-frequency capacitive effect of submarine cables. Secondly, manage composite submarine cable data nodes, transform the status relationship of data nodes, and ensure the quality of subsequent data release. A horizontal federation learning model is established to design the online monitoring data release process. The experimental results show that the new data release method is highly feasible. With the increasing online monitoring data of composite submarine cables, the time required for data release is short, and the timeliness is high.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于水平联邦学习的复合海缆在线监测数据发布方法
传统的在线复合海缆监测数据发布多采用区块链动态分区共识的方法和原理。数据发布过程中存在遗漏,完成任务耗时较长,降低了在线复合海缆监测数据发布的时效性。在此基础上,引入横向联邦学习,提出了一种新的数据发布方法。首先,采集复合海底电缆在线监测数据并进行预处理,消除海底电缆高频电容效应;其次,对复合海缆数据节点进行管理,转换数据节点的状态关系,保证后续数据发布的质量。建立了横向联邦学习模型,设计了在线监测数据发布流程。实验结果表明,新的数据发布方法是高度可行的。随着复合海底电缆在线监测数据的不断增加,数据发布所需时间短,及时性高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
期刊最新文献
A Deep LSTM-RNN Classification Method for Covid-19 Twitter Review Based on Sentiment Analysis Flexible English Learning Platform using Collaborative Cloud-Fog-Edge Networking Computer Malicious Code Signal Detection based on Big Data Technology Analyzing Spectator Emotions and Behaviors at Live Sporting Events using Computer Vision and Sentiment Analysis Techniques Spacecraft Test Data Integration Management Technology based on Big Data Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1