{"title":"A Method for Online Monitoring Data Release of Composite Submarine Cable Based on Horizontal Federated Learning","authors":"Xinli Lao, Jiajian Zhang, Chuanlian Gao, Huakun Deng, Yanlei Wei, Zhenzhong Liu","doi":"10.12694/scpe.v24i3.2275","DOIUrl":null,"url":null,"abstract":"Conventional online composite submarine cable monitoring data release mostly adopts the method and principle of blockchain dynamic zoning consensus. In the data release process, there are omissions, and it takes a long time to complete the task, which reduces the timeliness of online composite submarine cable monitoring data release. Based on this, a new data publishing method is proposed by introducing horizontal federation learning. First, the online monitoring data of composite submarine cables are collected and preprocessed to eliminate the high-frequency capacitive effect of submarine cables. Secondly, manage composite submarine cable data nodes, transform the status relationship of data nodes, and ensure the quality of subsequent data release. A horizontal federation learning model is established to design the online monitoring data release process. The experimental results show that the new data release method is highly feasible. With the increasing online monitoring data of composite submarine cables, the time required for data release is short, and the timeliness is high.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"17 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional online composite submarine cable monitoring data release mostly adopts the method and principle of blockchain dynamic zoning consensus. In the data release process, there are omissions, and it takes a long time to complete the task, which reduces the timeliness of online composite submarine cable monitoring data release. Based on this, a new data publishing method is proposed by introducing horizontal federation learning. First, the online monitoring data of composite submarine cables are collected and preprocessed to eliminate the high-frequency capacitive effect of submarine cables. Secondly, manage composite submarine cable data nodes, transform the status relationship of data nodes, and ensure the quality of subsequent data release. A horizontal federation learning model is established to design the online monitoring data release process. The experimental results show that the new data release method is highly feasible. With the increasing online monitoring data of composite submarine cables, the time required for data release is short, and the timeliness is high.
期刊介绍:
The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.