Real-time Monitoring Method of Insulation Status of Photoelectric Composite Submarine Cable based on Thermoelectric Coupling

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Scalable Computing-Practice and Experience Pub Date : 2023-09-10 DOI:10.12694/scpe.v24i3.2282
Xinli Lao, Jiajian Zhang, Chuanlian Gao, Huakun Deng, Yanlei Wei, Zhenzhong Liu
{"title":"Real-time Monitoring Method of Insulation Status of Photoelectric Composite Submarine Cable based on Thermoelectric Coupling","authors":"Xinli Lao, Jiajian Zhang, Chuanlian Gao, Huakun Deng, Yanlei Wei, Zhenzhong Liu","doi":"10.12694/scpe.v24i3.2282","DOIUrl":null,"url":null,"abstract":"The existing approach for monitoring the insulation state of photoelectric composite submarine cables primarily relies on detecting the current of the cable protection layer. However, this conventional method suffers from limited monitoring accuracy due to the absence of parameter identification processing for the cable. As a result, there is a need to improve the monitoring methodology by incorporating robust parameter identification techniques to enhance the accuracy of insulation state evaluation. In this regard, a real-time monitoring method based on thermoelectric coupling is proposed to monitor the insulation status of the photoelectric composite submarine cable. By constructing an equivalent composite circuit model and a thermodynamic function, a thermoelectric coupling model is constructed and used to identify the parameters of the submarine cable; by extracting the frequency extremes in the spectral values of the submarine cable current signal, an equivalent insulation characteristic function is constructed to realize the determination of the insulation state. The proposed method is verified for the insulation state monitoring effect in the experiment. The experimental results show that when the proposed method is used to monitor the insulation state of the photoelectric composite submarine cable, the calculated partial discharge quantity has a small error, and the monitoring accuracy is high.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The existing approach for monitoring the insulation state of photoelectric composite submarine cables primarily relies on detecting the current of the cable protection layer. However, this conventional method suffers from limited monitoring accuracy due to the absence of parameter identification processing for the cable. As a result, there is a need to improve the monitoring methodology by incorporating robust parameter identification techniques to enhance the accuracy of insulation state evaluation. In this regard, a real-time monitoring method based on thermoelectric coupling is proposed to monitor the insulation status of the photoelectric composite submarine cable. By constructing an equivalent composite circuit model and a thermodynamic function, a thermoelectric coupling model is constructed and used to identify the parameters of the submarine cable; by extracting the frequency extremes in the spectral values of the submarine cable current signal, an equivalent insulation characteristic function is constructed to realize the determination of the insulation state. The proposed method is verified for the insulation state monitoring effect in the experiment. The experimental results show that when the proposed method is used to monitor the insulation state of the photoelectric composite submarine cable, the calculated partial discharge quantity has a small error, and the monitoring accuracy is high.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热电耦合的光电复合海底电缆绝缘状态实时监测方法
现有的光电复合海底电缆绝缘状态监测方法主要依靠对电缆保护层电流的检测。然而,由于没有对电缆进行参数识别处理,这种传统方法的监测精度有限。因此,有必要通过结合鲁棒参数识别技术来改进监测方法,以提高绝缘状态评估的准确性。为此,提出了一种基于热电耦合的光电复合海底电缆绝缘状态实时监测方法。通过建立等效复合电路模型和热力学函数,建立了海底电缆的热电耦合模型并用于参数辨识;通过提取海缆电流信号频谱值中的频率极值,构造等效绝缘特征函数,实现绝缘状态的确定。实验验证了该方法的绝缘状态监测效果。实验结果表明,将该方法用于光电复合海缆绝缘状态监测时,计算的局部放电量误差小,监测精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
期刊最新文献
A Deep LSTM-RNN Classification Method for Covid-19 Twitter Review Based on Sentiment Analysis Flexible English Learning Platform using Collaborative Cloud-Fog-Edge Networking Computer Malicious Code Signal Detection based on Big Data Technology Analyzing Spectator Emotions and Behaviors at Live Sporting Events using Computer Vision and Sentiment Analysis Techniques Spacecraft Test Data Integration Management Technology based on Big Data Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1