An Improved Static Model for Bidirectional Notched Continuum Robot Considering the Cable-tension Loss

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL Journal of Mechanisms and Robotics-Transactions of the Asme Pub Date : 2023-10-16 DOI:10.1115/1.4063454
Zhengyu Wang, Zirui Jia, Sen Qian, Daoming Wang, Xiang Yu, Xuchang Liu
{"title":"An Improved Static Model for Bidirectional Notched Continuum Robot Considering the Cable-tension Loss","authors":"Zhengyu Wang, Zirui Jia, Sen Qian, Daoming Wang, Xiang Yu, Xuchang Liu","doi":"10.1115/1.4063454","DOIUrl":null,"url":null,"abstract":"Abstract The notched continuum mechanism is particularly suitable for natural orifice transluminal surgery benefiting from its small size and hollow structure. However, the widely used kinematic model based on constant curvature assumption does not reveal the actual deformation of the continuum mechanism, and its control accuracy is unstable, while the general mechanics model has the problem that the tension of the distal driving cable is difficult to measure. In this paper, a nonconstant curvature static model for a bidirectional V-shaped notched continuum mechanism is presented. The deformation of each part of the continuum mechanism from the distal end to the proximal end is analyzed in turn. The tension loss of the driving cable caused by the contact with the continuum mechanism is modeled using the capstan equation. The recursive equation between the deformation of each part of the continuum mechanism from the proximal end is derived, which can be solved numerically. The bending state of the continuum mechanism can then be estimated when only the tension of the proximal flexible cable is known. The model is experimentally verified by driving the continuum mechanism to move at a very low speed. The experiment results show that the estimation effect of the proposed model is significantly improved compared with that of the constant curvature model.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"38 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063454","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The notched continuum mechanism is particularly suitable for natural orifice transluminal surgery benefiting from its small size and hollow structure. However, the widely used kinematic model based on constant curvature assumption does not reveal the actual deformation of the continuum mechanism, and its control accuracy is unstable, while the general mechanics model has the problem that the tension of the distal driving cable is difficult to measure. In this paper, a nonconstant curvature static model for a bidirectional V-shaped notched continuum mechanism is presented. The deformation of each part of the continuum mechanism from the distal end to the proximal end is analyzed in turn. The tension loss of the driving cable caused by the contact with the continuum mechanism is modeled using the capstan equation. The recursive equation between the deformation of each part of the continuum mechanism from the proximal end is derived, which can be solved numerically. The bending state of the continuum mechanism can then be estimated when only the tension of the proximal flexible cable is known. The model is experimentally verified by driving the continuum mechanism to move at a very low speed. The experiment results show that the estimation effect of the proposed model is significantly improved compared with that of the constant curvature model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑缆索张力损失的双向缺口连续机器人改进静态模型
缺口连续体机构因其体积小、结构中空而特别适用于自然孔腔内手术。然而,目前广泛采用的基于常曲率假设的运动学模型并不能反映连续体机构的实际变形,其控制精度不稳定,而一般力学模型存在远端驱动索张力难以测量的问题。本文建立了双向v形缺口连续体机构的非常曲率静力模型。从远端到近端依次分析了连续体机构各部分的变形。采用绞盘方程对驱动索与连续介质机构接触造成的张力损失进行了建模。导出了连续介质机构各部分近端变形之间的递推方程,并可进行数值求解。当只知道近端柔性索的张力时,就可以估计连续体机构的弯曲状态。通过低速驱动连续体机构运动的实验验证了模型的正确性。实验结果表明,与常曲率模型相比,该模型的估计效果有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
期刊最新文献
On the Construction of Confidence Regions for Uncertain Planar Displacements. Redundant Serial Manipulator Inverse Position Kinematics and Dynamics Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal Design and Analysis of a Novel Redundant Parallel Mechanism for Long Bone Fracture Reduction Design of a Novel Large-Stroke Compliant Constant-Torque Mechanism Based on Chained Beam-Constraint Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1