Wear mechanism and leakage failure analysis of the mechanical seal end face of an oil transfer pump

Lin Feng Qiao, Li Mo, Liangjie Mao, LingXiang Zeng
{"title":"Wear mechanism and leakage failure analysis of the mechanical seal end face of an oil transfer pump","authors":"Lin Feng Qiao, Li Mo, Liangjie Mao, LingXiang Zeng","doi":"10.1177/13506501231206696","DOIUrl":null,"url":null,"abstract":"The John Crane 48 V mechanical seal is a long-distance oil transfer pump station shaft end seal; its sealing effect directly affects pipeline production safety. However, it has been found that there is oil leakage at the shaft end of the pump station. In order to explore the oil transfer pump mechanical seal abnormal leakage failure causes, to ensure the safety and stability of production, the end face of the 48 V mechanical seal was analyzed by white light interference and scanning electron microscope technology. The failure mechanism of the 48 V mechanical seal was explored from the perspective of the wear mechanism of moving and stationary rings. Results showed that the wear mechanism of the 48 V mechanical seal stationary ring was mainly abrasive wear, and substantial furrows, bulges, and depressions existed on the wear surface. The material removal mechanism was brittle spalling, and the roughness of the wear surface increased with the increase in wear depth and decreased with the increase in wear average width. Uneven wear occurred on the end face of the stationary ring of the mechanical seal, resulting in the leakage of the sealing medium from the end cover of the mechanical seal. The working condition could be improved by adding a spring compensation device to the stationary ring or increasing the gap between the stationary ring and the shaft sleeve.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"80 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231206696","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The John Crane 48 V mechanical seal is a long-distance oil transfer pump station shaft end seal; its sealing effect directly affects pipeline production safety. However, it has been found that there is oil leakage at the shaft end of the pump station. In order to explore the oil transfer pump mechanical seal abnormal leakage failure causes, to ensure the safety and stability of production, the end face of the 48 V mechanical seal was analyzed by white light interference and scanning electron microscope technology. The failure mechanism of the 48 V mechanical seal was explored from the perspective of the wear mechanism of moving and stationary rings. Results showed that the wear mechanism of the 48 V mechanical seal stationary ring was mainly abrasive wear, and substantial furrows, bulges, and depressions existed on the wear surface. The material removal mechanism was brittle spalling, and the roughness of the wear surface increased with the increase in wear depth and decreased with the increase in wear average width. Uneven wear occurred on the end face of the stationary ring of the mechanical seal, resulting in the leakage of the sealing medium from the end cover of the mechanical seal. The working condition could be improved by adding a spring compensation device to the stationary ring or increasing the gap between the stationary ring and the shaft sleeve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
油泵机械密封端面磨损机理及泄漏失效分析
约翰克兰48v机械密封是一种远距离输油泵站轴端密封;其密封效果直接影响管道生产安全。但发现泵站轴端有漏油现象。为了探究输油泵机械密封异常泄漏故障原因,保证生产安全稳定,采用白光干涉和扫描电镜技术对48 V机械密封端面进行了分析。从动环和静环磨损机理的角度探讨了48v机械密封的失效机理。结果表明:48v机械密封静环的磨损机制以磨粒磨损为主,磨损表面存在大量的沟、凸起和凹陷;材料的去除机制为脆性剥落,磨损表面粗糙度随磨损深度的增加而增大,随磨损平均宽度的增加而减小。机械密封固定环端面发生不均匀磨损,导致密封介质从机械密封端盖泄漏。可通过在静环上增加弹簧补偿装置或增大静环与轴套之间的间隙来改善工况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Investigation of nanoparticle diameter influences on performance of hydrodynamic journal bearings operating with nanolubricant Effects of a typical shear dependent viscosity on analytical elastohydrodynamic lubrication film thickness predictions: A critical issue for the classical approach Research progress of surface texturing to improve the tribological properties: A review Study of the effect of laser textured rotors on the starting performance of metal–rubber mating pairs under different lubricating media environments Hybrid lubrication model study of slip ring combination seal under the influence of frictional heat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1