Yi Zhang, Zichen Lou, Fu Wei, Shuai Lin, Ling Hu, Wei He
{"title":"Hybrid lubrication model study of slip ring combination seal under the influence of frictional heat","authors":"Yi Zhang, Zichen Lou, Fu Wei, Shuai Lin, Ling Hu, Wei He","doi":"10.1177/13506501231219722","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental and theoretical investigation into the factors influencing the sealing performance of combined slip rings. Factoring in the frictional heat from micro convex bodies and convective heat exchange between the slip ring, oil film, and air, we formulate a thermoelastic flow hybrid lubrication model for the combined slip ring seal. This model calculates the distribution of oil film thickness, pressure, temperature, velocity, and viscosity in the sealing zone, drawing on the generalized average Reynolds equation and the transmembrane average energy equation, in conjunction with the heat conduction equation of the slip ring. Utilizing the Archard wear model, we also examine the wear characteristics of the combined slip ring seal, providing insights into seal wear under these conditions. The model enables an analysis of the interplay between parameters and their impact on seal performance. The method proposed accurately predicts friction and leakage in line with experimental data, thereby providing a theoretical foundation for further numerical investigation of seal characteristics.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":" 9","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231219722","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an experimental and theoretical investigation into the factors influencing the sealing performance of combined slip rings. Factoring in the frictional heat from micro convex bodies and convective heat exchange between the slip ring, oil film, and air, we formulate a thermoelastic flow hybrid lubrication model for the combined slip ring seal. This model calculates the distribution of oil film thickness, pressure, temperature, velocity, and viscosity in the sealing zone, drawing on the generalized average Reynolds equation and the transmembrane average energy equation, in conjunction with the heat conduction equation of the slip ring. Utilizing the Archard wear model, we also examine the wear characteristics of the combined slip ring seal, providing insights into seal wear under these conditions. The model enables an analysis of the interplay between parameters and their impact on seal performance. The method proposed accurately predicts friction and leakage in line with experimental data, thereby providing a theoretical foundation for further numerical investigation of seal characteristics.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).