Jayant Barode, Ashok Vayyala, Enrico Virgillito, Alberta Aversa, Joachim Mayer, Paolo Fino, Mariangela Lombardi
{"title":"Revisiting heat treatments for additive manufactured parts: A case study of A20X alloy","authors":"Jayant Barode, Ashok Vayyala, Enrico Virgillito, Alberta Aversa, Joachim Mayer, Paolo Fino, Mariangela Lombardi","doi":"10.1016/j.matdes.2022.111566","DOIUrl":null,"url":null,"abstract":"A20X (Al-Cu-Ag-Mg-TiB2) is a precipitation hardening alloy, recently developed for additive manufacturing processing. Printed parts of A20X alloy are usually post-processed with a long T7 heat treatment for improved mechanical properties with respect to its as-built counterparts. However, in the present investigation, it was demonstrated that T7 might not be the best suitable heat treatment available for A20X alloy. A detailed microstructural characterization of A20X samples processed with laser powder bed fusion and post-processed with T7 was carried out. Microstructural features were analysed in terms of grain size, precipitate size, phase quantification, dislocation density and width of the precipitate free zones. After the analysis, a simple and rapid heat treatment was proposed which significantly improved the mechanical properties. The yield strength (YS), ultimate tensile strength (UTS) and elongation to fracture (e) for the T7 heat treatment were 370 ± 9 MPa, 435 ± 13 MPa and 7.3 ± 0.3 % respectively. With the proposed heat treatment, an increment of 7.1 % in YS, 6.3 % in UTS and 45 % in e was witnessed. This exceptional improvement in the mechanical behaviour has been associated with the absence of grain boundary cracking in the proposed heat treatment.","PeriodicalId":101318,"journal":{"name":"MATERIALS & DESIGN","volume":"13 1","pages":"0"},"PeriodicalIF":8.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATERIALS & DESIGN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.matdes.2022.111566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A20X (Al-Cu-Ag-Mg-TiB2) is a precipitation hardening alloy, recently developed for additive manufacturing processing. Printed parts of A20X alloy are usually post-processed with a long T7 heat treatment for improved mechanical properties with respect to its as-built counterparts. However, in the present investigation, it was demonstrated that T7 might not be the best suitable heat treatment available for A20X alloy. A detailed microstructural characterization of A20X samples processed with laser powder bed fusion and post-processed with T7 was carried out. Microstructural features were analysed in terms of grain size, precipitate size, phase quantification, dislocation density and width of the precipitate free zones. After the analysis, a simple and rapid heat treatment was proposed which significantly improved the mechanical properties. The yield strength (YS), ultimate tensile strength (UTS) and elongation to fracture (e) for the T7 heat treatment were 370 ± 9 MPa, 435 ± 13 MPa and 7.3 ± 0.3 % respectively. With the proposed heat treatment, an increment of 7.1 % in YS, 6.3 % in UTS and 45 % in e was witnessed. This exceptional improvement in the mechanical behaviour has been associated with the absence of grain boundary cracking in the proposed heat treatment.
期刊介绍:
Materials and Design is a multidisciplinary journal that publishes original research reports, review articles, and express communications. It covers a wide range of topics including the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, as well as the design of materials and engineering systems, and their applications in technology.
The journal aims to integrate various disciplines such as materials science, engineering, physics, and chemistry. By exploring themes from materials to design, it seeks to uncover connections between natural and artificial materials, and between experimental findings and theoretical models. Manuscripts submitted to Materials and Design are expected to offer elements of discovery and surprise, contributing to new insights into the architecture and function of matter.