{"title":"Scanning transmission electron microscopy for advanced characterization of ferroic materials","authors":"Matthew J. Cabral, Zibin Chen, Xiaozhou Liao","doi":"10.20517/microstructures.2023.39","DOIUrl":null,"url":null,"abstract":"Scanning Transmission electron microscopy (STEM) technologies have undergone significant advancements in the last two decades. Advancements in aberration-correction technology, ultra-high energy resolution monochromators, and state-of-the-art detectors/cameras have established STEM as an essential tool for investigating material chemistry and structure from the micro to the atomic scale. This characterization technique has been invaluable for understanding and characterizing the origins of ferroic material properties in next-generation advanced materials. Many unique properties of engineering materials, such as ferroelectricity, piezoelectricity, and ferromagnetism, are intricately linked to their atomic-scale composition and structure. STEM enables direct observation of these structural characteristics, establishing a link with macroscopic properties. In this perspective, we provide an overview of the application of advanced STEM techniques in investigating the origin of ferroic material properties, along with discussions on potential opportunities for further utilization of STEM techniques.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"28 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.39","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Scanning Transmission electron microscopy (STEM) technologies have undergone significant advancements in the last two decades. Advancements in aberration-correction technology, ultra-high energy resolution monochromators, and state-of-the-art detectors/cameras have established STEM as an essential tool for investigating material chemistry and structure from the micro to the atomic scale. This characterization technique has been invaluable for understanding and characterizing the origins of ferroic material properties in next-generation advanced materials. Many unique properties of engineering materials, such as ferroelectricity, piezoelectricity, and ferromagnetism, are intricately linked to their atomic-scale composition and structure. STEM enables direct observation of these structural characteristics, establishing a link with macroscopic properties. In this perspective, we provide an overview of the application of advanced STEM techniques in investigating the origin of ferroic material properties, along with discussions on potential opportunities for further utilization of STEM techniques.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4