Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Superlattices and Microstructures Pub Date : 2023-11-15 DOI:10.20517/microstructures.2023.43
Ichiro Fujii, Susan Trolier-McKinstry
{"title":"Temperature dependence of dielectric nonlinearity of BaTiO<sub>3</sub> ceramics","authors":"Ichiro Fujii, Susan Trolier-McKinstry","doi":"10.20517/microstructures.2023.43","DOIUrl":null,"url":null,"abstract":"In many commercially utilized ferroelectric materials, the motion of domain walls is an important contributor to the functional dielectric and piezoelectric responses. This paper compares the temperature dependence of domain wall motion for BaTiO3 ceramics with different grain sizes, point defect concentrations, and formulations. The grain boundaries act as significant pinning points for domain wall motion such that fine-grained materials show smaller extrinsic contributions to the properties below the Curie temperature and lower residual ferroelectric contributions immediately above the Curie temperature. Oxygen vacancy point defects make a modest change in the extrinsic contributions of undoped BaTiO3 ceramics. In formulated BaTiO3, extrinsic contributions to the dielectric response were suppressed over a wide temperature range. It is believed this is due to a combination of reduced grain size, the existence of a core-shell microstructure, and a reduction in domain wall continuity over the grain boundaries.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.43","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In many commercially utilized ferroelectric materials, the motion of domain walls is an important contributor to the functional dielectric and piezoelectric responses. This paper compares the temperature dependence of domain wall motion for BaTiO3 ceramics with different grain sizes, point defect concentrations, and formulations. The grain boundaries act as significant pinning points for domain wall motion such that fine-grained materials show smaller extrinsic contributions to the properties below the Curie temperature and lower residual ferroelectric contributions immediately above the Curie temperature. Oxygen vacancy point defects make a modest change in the extrinsic contributions of undoped BaTiO3 ceramics. In formulated BaTiO3, extrinsic contributions to the dielectric response were suppressed over a wide temperature range. It is believed this is due to a combination of reduced grain size, the existence of a core-shell microstructure, and a reduction in domain wall continuity over the grain boundaries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BaTiO3陶瓷介电非线性的温度依赖性
在许多商业应用的铁电材料中,畴壁的运动是影响功能介电和压电响应的重要因素。本文比较了不同晶粒尺寸、点缺陷浓度和配方的BaTiO3陶瓷畴壁运动的温度依赖性。晶界作为畴壁运动的重要固定点,使得细晶材料在居里温度以下表现出较小的外在特性贡献,在居里温度以上表现出较小的残余铁电贡献。氧空位点缺陷对未掺杂BaTiO3陶瓷的外在贡献有一定的影响。在配制的BaTiO3中,介电响应的外在贡献在很宽的温度范围内被抑制。人们认为这是由于晶粒尺寸减小、核壳微观结构的存在以及晶界上畴壁连续性降低的共同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
期刊最新文献
Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics Influence of hydrogel and porous scaffold on the magnetic thermal property and anticancer effect of Fe3O4 nanoparticles Magnetic structures and correlated physical properties in antiperovskites Cryogenic atom probe tomography and its applications: a review Scanning transmission electron microscopy for advanced characterization of ferroic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1