Thermal stability improvement and microstructure optimization of high cobalt content Nd-Fe-B magnets via terbium grain boundary diffusion

IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED Journal of Rare Earths Pub Date : 2024-08-01 DOI:10.1016/j.jre.2023.10.023
{"title":"Thermal stability improvement and microstructure optimization of high cobalt content Nd-Fe-B magnets via terbium grain boundary diffusion","authors":"","doi":"10.1016/j.jre.2023.10.023","DOIUrl":null,"url":null,"abstract":"<div><p>The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets. However, the accumulation of Co element at the grain boundaries (GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thin-layer GBs to become rare. In this paper, the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets. Three original sintered Nd<sub>28.5</sub>Dy<sub>3</sub>-Co<sub><em>x</em></sub>Fe<sub>bal</sub>M<sub>0.6</sub>B<sub>1</sub> (<em>x</em> = 0, 6 wt%, 12 wt%; M = Cu, Al, Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion (GBD). After GBD, high-Co magnets exhibit more continuously distributed thin-layer GBs, and their thermal stability is significantly improved. In high-Co magnets (<em>x</em> = 6 wt%), the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to 0.508%/K in the temperature range of 293–413 K, that of remanence decreases from 0.099%/K to 0.091%/K, and the coercivity increases from 18.44 to 25.04 kOe. Transmission electron microscopy (TEM) characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD. EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase. The concentration of Tb at the edge of the main phase is much higher than that in the 1:2 phase and amorphous phase, which is beneficial to the improvement of the microstructure. The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets. The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1531-1538"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123003010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets. However, the accumulation of Co element at the grain boundaries (GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thin-layer GBs to become rare. In this paper, the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets. Three original sintered Nd28.5Dy3-CoxFebalM0.6B1 (x = 0, 6 wt%, 12 wt%; M = Cu, Al, Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion (GBD). After GBD, high-Co magnets exhibit more continuously distributed thin-layer GBs, and their thermal stability is significantly improved. In high-Co magnets (x = 6 wt%), the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to 0.508%/K in the temperature range of 293–413 K, that of remanence decreases from 0.099%/K to 0.091%/K, and the coercivity increases from 18.44 to 25.04 kOe. Transmission electron microscopy (TEM) characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD. EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase. The concentration of Tb at the edge of the main phase is much higher than that in the 1:2 phase and amorphous phase, which is beneficial to the improvement of the microstructure. The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets. The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过铽晶界扩散改善高钴含量钕铁硼磁体的热稳定性并优化其微观结构
在 2:14:1 相中用 Co 取代 Fe 是提高钕铁硼磁体居里温度和热稳定性的有效方法。然而,Co 元素在晶界(GBs)的积累会使 GBs 从非磁性变为铁磁性,并导致薄层 GBs 变得稀少。本文选择了扩散铽元素的方法来改善高钴磁体的微观结构和温度稳定性。通过晶界扩散(GBD)将铽元素扩散到三种不同钴含量的原始烧结 Nd28.5Dy3-CoxFebalM0.6B1(x = 0、6 wt%、12 wt%;M = Cu、Al、Zr)磁体中。经过 GBD 后,高钴磁体呈现出更多连续分布的薄层 GB,其热稳定性也显著提高。在高钴磁体(x = 6 wt%)中,矫顽力温度系数的绝对值在 293-413 K 温度范围内从 0.603%/K 降至 0.508%/K,剩磁系数从 0.099%/K 降至 0.091%/K,矫顽力从 18.44 kOe 增至 25.04 kOe。透射电子显微镜(TEM)表征显示,GBD 前后的高钴磁体中都存在 1:2 相和无定形相。EDS 元素分析表明,与 1:2 相和无定形相相比,铽元素更有可能优先取代 2:14:1 主相中的稀土元素。主相边缘的铽元素浓度远高于 1:2 相和无定形相,这有利于微观结构的改善。2:14:1 相边缘 Tb 元素的优先置换和分布更连续的薄层 GB 协同改善了高钴磁体的热稳定性。研究表明,GBD 是改善高钴磁体微观结构和热稳定性的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Rare Earths
Journal of Rare Earths 化学-应用化学
CiteScore
8.70
自引率
14.30%
发文量
374
审稿时长
1.7 months
期刊介绍: The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field. The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.
期刊最新文献
Synthesis, phase transformation and applications of CeCO3OH: A review Large reversible magnetocaloric effect in antiferromagnetic Er3Si2C2 compound Crystal structure and luminescence dynamics of highly pure LiM(PO3)3:Eu3+ (M = Sr, Ca) red phosphors for white light emitting diodes Utilizing N-hydroxy-9-octadecenamide as a collector in flotation separation of bastnaesite and fluorite A ratiometric optical thermometer with dual-color emission based on Eu2+-doped CsCu2I3 microcrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1