Y. Slimani, M. A. Almessiere, A. Baykal, A. Demir Korkmaz, I. A. Auwal
{"title":"Impression of partial replacement of Fe3+ by Sn4+ ion on structural and magnetic features of NiCuZn nanospinel ferrites","authors":"Y. Slimani, M. A. Almessiere, A. Baykal, A. Demir Korkmaz, I. A. Auwal","doi":"10.1007/s13204-023-02974-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the current study, Ni<sub>0.4</sub>Cu<sub>0.2</sub>Zn<sub>0.4</sub>Fe<sub>2−4x</sub>Sn<sub>3x</sub>O<sub>4</sub> (Sn → NiCuZn) (x ≤ 0.10) nanospinel ferrites (NSFs) have been fabricated by a citrate sol–gel approach, and their structure, morphology, and magnetic features were investigated via XRD, SEM with EDX, HR-TEM, TEM, and VSM, respectively. Their cubic spinel phase was endorsed from their Rietveld refinement. The products’ D<sub>XRD</sub> (crystallite sizes) were estimated within the 36–69 nm range. The 10 and 300 K magnetization measurements show ferromagnetic and superparamagnetic behaviors, respectively. The saturation magnetization (M<sub>s</sub>) decreases at both temperatures with increasing Sn ratio up to <i>x</i> = 0.06 into the lattice of NSFs but thereafter rises with the additional rise of Sn ratio from 0.06 to 0.10. The alterations of M<sub>s</sub> values with Sn substitution have been deliberated via cation redistribution, and changes in the anisotropy constant. H<sub>c</sub> value at 10 K almost initially increased for lower Sn content and then decreased at higher Sn content. The coercivity is in reverse proportionality to the particle/crystallite size and domain wall movement of ferromagnetism.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 1","pages":"241 - 249"},"PeriodicalIF":3.6740,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-023-02974-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In the current study, Ni0.4Cu0.2Zn0.4Fe2−4xSn3xO4 (Sn → NiCuZn) (x ≤ 0.10) nanospinel ferrites (NSFs) have been fabricated by a citrate sol–gel approach, and their structure, morphology, and magnetic features were investigated via XRD, SEM with EDX, HR-TEM, TEM, and VSM, respectively. Their cubic spinel phase was endorsed from their Rietveld refinement. The products’ DXRD (crystallite sizes) were estimated within the 36–69 nm range. The 10 and 300 K magnetization measurements show ferromagnetic and superparamagnetic behaviors, respectively. The saturation magnetization (Ms) decreases at both temperatures with increasing Sn ratio up to x = 0.06 into the lattice of NSFs but thereafter rises with the additional rise of Sn ratio from 0.06 to 0.10. The alterations of Ms values with Sn substitution have been deliberated via cation redistribution, and changes in the anisotropy constant. Hc value at 10 K almost initially increased for lower Sn content and then decreased at higher Sn content. The coercivity is in reverse proportionality to the particle/crystallite size and domain wall movement of ferromagnetism.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.