Tasneem Saleem, Salleh Ahmad, Jean-Baptiste Cizel, Christophe de la Taille, Maxime Morenas, Vanessa Nadig, Florent Perez, Volkmar Schulz, Stefan Gundacker, Julien Fleury
{"title":"Study experimental time resolution limits of recent ASICs at Weeroc with different SiPMs and scintillators","authors":"Tasneem Saleem, Salleh Ahmad, Jean-Baptiste Cizel, Christophe de la Taille, Maxime Morenas, Vanessa Nadig, Florent Perez, Volkmar Schulz, Stefan Gundacker, Julien Fleury","doi":"10.1088/1748-0221/18/10/p10005","DOIUrl":null,"url":null,"abstract":"Abstract Medical applications, such as Positron Emission Tomography (PET), and space applications, such as Light Detection and Ranging (LIDAR), are in need of highly specialized ASICs. Weeroc, in collaboration with different partners, is highly involved in developing a new generation of front-end ASICs. In the context of a joined LIDAR project among Weeroc, CNES, and Airbus, Weeroc is working on the development of Liroc, an ASIC for space LIDAR application. Weeroc is also working on advancing ASICs for medical applications with Radioroc under development and intended to be used for PET applications. This study experimentally evaluates the time resolution limits of these ASICs in different configurations, with some of the most recent silicon photomultiplier (SiPM) technologies available on the market, coupled to different scintillation crystals. The best single-photon time resolution (SPTR) was achieved using FBK NUV-HD SiPMs with an FWHM of 90 ps with Liroc and 73 ps with Radioroc. Furthermore, the coincidence time resolution (CTR) of Radioroc was studied with different crystal sizes. Using a large LYSO:Ce,Ca crystal of (3 × 3 × 20 mm 3 ) with Broadcom Near UltraViolet-Metal in Trench (NUV-MT) yields a CTR of 127 ps (FWHM). The best CTR of Radioroc was determined to 83 ps (FWHM) with Broadcom NUV-MT SiPMs coupled to LYSO:Ce,Ca (2 × 2 × 3 mm 3 )) from Taiwan Applied Crystal (TAC).","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"71 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/10/p10005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Medical applications, such as Positron Emission Tomography (PET), and space applications, such as Light Detection and Ranging (LIDAR), are in need of highly specialized ASICs. Weeroc, in collaboration with different partners, is highly involved in developing a new generation of front-end ASICs. In the context of a joined LIDAR project among Weeroc, CNES, and Airbus, Weeroc is working on the development of Liroc, an ASIC for space LIDAR application. Weeroc is also working on advancing ASICs for medical applications with Radioroc under development and intended to be used for PET applications. This study experimentally evaluates the time resolution limits of these ASICs in different configurations, with some of the most recent silicon photomultiplier (SiPM) technologies available on the market, coupled to different scintillation crystals. The best single-photon time resolution (SPTR) was achieved using FBK NUV-HD SiPMs with an FWHM of 90 ps with Liroc and 73 ps with Radioroc. Furthermore, the coincidence time resolution (CTR) of Radioroc was studied with different crystal sizes. Using a large LYSO:Ce,Ca crystal of (3 × 3 × 20 mm 3 ) with Broadcom Near UltraViolet-Metal in Trench (NUV-MT) yields a CTR of 127 ps (FWHM). The best CTR of Radioroc was determined to 83 ps (FWHM) with Broadcom NUV-MT SiPMs coupled to LYSO:Ce,Ca (2 × 2 × 3 mm 3 )) from Taiwan Applied Crystal (TAC).
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.