A Novel Free-Standing Riser Concept for Deepwater Developments

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme Pub Date : 2023-06-22 DOI:10.1115/1.4062688
Carlos Terencio Pires Bomfimsilva, Theodoro Antoun Netto
{"title":"A Novel Free-Standing Riser Concept for Deepwater Developments","authors":"Carlos Terencio Pires Bomfimsilva, Theodoro Antoun Netto","doi":"10.1115/1.4062688","DOIUrl":null,"url":null,"abstract":"Abstract Free-standing hybrid risers (FSHR) are well established in deepwater field developments in the oil and gas industry. The major advantages foreseen for the FSHR are the possibility of safely anticipating production and requiring significantly reduced payloads at the floating production unit. This work addresses the feasibility of a novel proposed optimized concept, the free-standing integrated riser (FSIR), where the pipeline is integrated into the riser by means of a transition section, which is kept in place by a multiple line mooring system, developed to keep the functionality and integrity of the entire riser along its lifetime. The work provides the findings from numerical analysis simulated in orcaflex, a finite element simulation software dedicated to global analysis of risers, considering the design criteria provided in API 2RD Standard. As part of the FSIR evaluation, screening static analysis was performed to identify the most promising configurations for the multiple line mooring system, followed by a series of dynamic analyses to evaluate the behavior of the riser in extreme conditions. In addition, several investigations were performed to assess the functionality and the robustness of the system, including parametric studies to check for installation and dimensional tolerances, assessment of fatigue damage, and checking the impact of pipe size on the design. The results show that the proposed novel FSIR concept can provide a practical and economical solution for deepwater projects.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062688","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Free-standing hybrid risers (FSHR) are well established in deepwater field developments in the oil and gas industry. The major advantages foreseen for the FSHR are the possibility of safely anticipating production and requiring significantly reduced payloads at the floating production unit. This work addresses the feasibility of a novel proposed optimized concept, the free-standing integrated riser (FSIR), where the pipeline is integrated into the riser by means of a transition section, which is kept in place by a multiple line mooring system, developed to keep the functionality and integrity of the entire riser along its lifetime. The work provides the findings from numerical analysis simulated in orcaflex, a finite element simulation software dedicated to global analysis of risers, considering the design criteria provided in API 2RD Standard. As part of the FSIR evaluation, screening static analysis was performed to identify the most promising configurations for the multiple line mooring system, followed by a series of dynamic analyses to evaluate the behavior of the riser in extreme conditions. In addition, several investigations were performed to assess the functionality and the robustness of the system, including parametric studies to check for installation and dimensional tolerances, assessment of fatigue damage, and checking the impact of pipe size on the design. The results show that the proposed novel FSIR concept can provide a practical and economical solution for deepwater projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深水开发的新型独立式立管概念
独立式混合式立管(FSHR)在油气行业的深水油田开发中得到了广泛应用。FSHR的主要优点是可以安全预测生产,并且大大减少了浮式生产单元的有效载荷。这项工作解决了一种新提出的优化概念的可行性,即独立式集成立管(FSIR),其中管道通过过渡段集成到立管中,该过渡段由多管系泊系统保持在原位,以保持整个立管在其使用寿命期间的功能和完整性。考虑到API 2RD标准中提供的设计准则,该工作提供了在orcaflex中模拟的数值分析结果,orcaflex是一个致力于立管全局分析的有限元模拟软件。作为FSIR评估的一部分,进行了筛选静态分析,以确定最适合多缆系泊系统的配置,然后进行了一系列动态分析,以评估隔水管在极端条件下的行为。此外,研究人员还对系统的功能和稳健性进行了评估,包括参数化研究,以检查安装和尺寸公差,评估疲劳损伤,以及检查管道尺寸对设计的影响。结果表明,提出的新型FSIR概念可以为深水项目提供一种实用且经济的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
期刊最新文献
PEridynamic Analysis of Tubular Joints of Offshore Jacket Structure Underwater impulsive response of sandwich structure with multilayer foam core Numerical Study on the Automatic Ballast Control of a Floating Dock Gravity wave interaction with a composite pile-rock breakwater Modelling Green Water Load on A Deck Mounted Circular Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1