Functional and variables selection in extreme value models for regional flood frequency analysis

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environmental and Ecological Statistics Pub Date : 2023-10-27 DOI:10.1007/s10651-023-00581-8
Aldo Gardini
{"title":"Functional and variables selection in extreme value models for regional flood frequency analysis","authors":"Aldo Gardini","doi":"10.1007/s10651-023-00581-8","DOIUrl":null,"url":null,"abstract":"Abstract The problem of estimating return levels of river discharge, relevant in flood frequency analysis, is tackled by relying on the extreme value theory. The Generalized Extreme Value (GEV) distribution is assumed to model annual maxima values of river discharge registered at multiple gauging stations belonging to the same river basin. The specific features of the data from the Upper Danube basin drive the definition of the proposed statistical model. Firstly, Bayesian P-splines are considered to account for the non-linear effects of station-specific covariates on the GEV parameters. Secondly, the problem of functional and variable selection is addressed by imposing a grouped horseshoe prior to the coefficients to encourage the shrinkage of non-relevant components to zero. A cross-validation study is organized to compare the proposed modeling solution to other models, showing its potential to reduce the uncertainty of the ungauged predictions without affecting their calibration.","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"18 12","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10651-023-00581-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The problem of estimating return levels of river discharge, relevant in flood frequency analysis, is tackled by relying on the extreme value theory. The Generalized Extreme Value (GEV) distribution is assumed to model annual maxima values of river discharge registered at multiple gauging stations belonging to the same river basin. The specific features of the data from the Upper Danube basin drive the definition of the proposed statistical model. Firstly, Bayesian P-splines are considered to account for the non-linear effects of station-specific covariates on the GEV parameters. Secondly, the problem of functional and variable selection is addressed by imposing a grouped horseshoe prior to the coefficients to encourage the shrinkage of non-relevant components to zero. A cross-validation study is organized to compare the proposed modeling solution to other models, showing its potential to reduce the uncertainty of the ungauged predictions without affecting their calibration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区域洪水频率分析极值模型的函数选择与变量选择
摘要利用极值理论解决了洪水频率分析中涉及到的河流流量回归水位估算问题。采用广义极值(GEV)分布来模拟同一流域内多个测量站记录的河流年最大流量。多瑙河上游流域数据的具体特征驱动了所提出的统计模型的定义。首先,考虑贝叶斯p样条曲线来解释特定台站协变量对GEV参数的非线性影响。其次,通过在系数之前施加分组马蹄铁来解决功能和变量选择的问题,以鼓励非相关成分的收缩为零。组织了一个交叉验证研究,将提出的建模解决方案与其他模型进行比较,显示其在不影响其校准的情况下减少未测量预测的不确定性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Ecological Statistics
Environmental and Ecological Statistics 环境科学-环境科学
CiteScore
5.90
自引率
2.60%
发文量
27
审稿时长
>36 weeks
期刊介绍: Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues. Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics. Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.
期刊最新文献
Identifying key drivers of extinction for Chitala populations: data-driven insights from an intraguild predation model using a Bayesian framework Health effects of noise and application of machine learning techniques as prediction tools in noise induced health issues: a systematic review Multivariate Bayesian models with flexible shared interactions for analyzing spatio-temporal patterns of rare cancers A novel hybrid approach based on outlier and error correction methods to predict river discharge using meteorological variables Bayesian design methods for improving the effectiveness of ecosystem monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1