{"title":"PROCESSES OF DEFECT FORMATION IN SILICON DIFFUSIONALLY DOPED WITH PLATINUM AND IRRADIATED WITH PROTONS","authors":"Sh.B. Utamuradov","doi":"10.31489/2023no3/35-42","DOIUrl":null,"url":null,"abstract":"In this work, we studied the effect of technological regimes and proton implantation on the processes of defect formation in single-crystal n-type silicon (n-Si) doped with platinum using the method of impedance spectroscopy. It has been established that radiation-induced changes in the electrical conductivity of silicon depend significantly on the technological regimes of doping with impurities in silicon. Hodographs show that doping with platinum leads to a decrease in the electrical resistance of silicon samples. Irradiation with 2 MeV protons at a dose of 5.1 × 1014 particles / cm2 leads to a significant (2-3 times) increase in the electrical resistance of the silicon samples under study. It is concluded that the relatively high resistance to radiation exposure (resistance change of no more than 16%: from 55 kΩ to 65 kΩ as a result of ion implantation) of samples doped at 1200°C is presumably due to a higher concentration of impurity ions (platinum) in the samples volume compared to 1100°C.","PeriodicalId":11789,"journal":{"name":"Eurasian Physical Technical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Physical Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023no3/35-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we studied the effect of technological regimes and proton implantation on the processes of defect formation in single-crystal n-type silicon (n-Si) doped with platinum using the method of impedance spectroscopy. It has been established that radiation-induced changes in the electrical conductivity of silicon depend significantly on the technological regimes of doping with impurities in silicon. Hodographs show that doping with platinum leads to a decrease in the electrical resistance of silicon samples. Irradiation with 2 MeV protons at a dose of 5.1 × 1014 particles / cm2 leads to a significant (2-3 times) increase in the electrical resistance of the silicon samples under study. It is concluded that the relatively high resistance to radiation exposure (resistance change of no more than 16%: from 55 kΩ to 65 kΩ as a result of ion implantation) of samples doped at 1200°C is presumably due to a higher concentration of impurity ions (platinum) in the samples volume compared to 1100°C.