ANALYSIS OF METHODS FOR SIMULATING THE DECAY HEAT IN CORIUM WHEN MODELING A SEVERE ACCIDENTS AT NUCLEAR POWER PLANT

M.K. Skakov
{"title":"ANALYSIS OF METHODS FOR SIMULATING THE DECAY HEAT IN CORIUM WHEN MODELING A SEVERE ACCIDENTS AT NUCLEAR POWER PLANT","authors":"M.K. Skakov","doi":"10.31489/2024no1/57-66","DOIUrl":null,"url":null,"abstract":"It is known that during development of a severe accident at a nuclear power plant, the melting of core materials and theformation of corium occurs. A feature of corium is the presence of a decay heat, which contributes a lot to the nature of its interaction with the structural materials of the reactor facility. In this regard, quite serious requirements are imposed on methods for simulating decay heat in the corium prototype, which relate to both the uniformity of the volume distribution and its intensity. This paper presents a comparative analysis of existing methods for decay heat simulation in corium, which are used at various experimental facilities investigating the operation of passive protection systems in severe accidents with reactor meltdown at nuclear power plants. By comparing the advantages and disadvantages, a more practical method of decay heat simulation is determined and ways are proposed to further improve the chosen method to fully simulate the thermal field of a real corium.","PeriodicalId":11789,"journal":{"name":"Eurasian Physical Technical Journal","volume":"19 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Physical Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2024no1/57-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that during development of a severe accident at a nuclear power plant, the melting of core materials and theformation of corium occurs. A feature of corium is the presence of a decay heat, which contributes a lot to the nature of its interaction with the structural materials of the reactor facility. In this regard, quite serious requirements are imposed on methods for simulating decay heat in the corium prototype, which relate to both the uniformity of the volume distribution and its intensity. This paper presents a comparative analysis of existing methods for decay heat simulation in corium, which are used at various experimental facilities investigating the operation of passive protection systems in severe accidents with reactor meltdown at nuclear power plants. By comparing the advantages and disadvantages, a more practical method of decay heat simulation is determined and ways are proposed to further improve the chosen method to fully simulate the thermal field of a real corium.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在模拟核电站严重事故时分析模拟冕中衰变热的方法
众所周知,在核电站发生严重事故时,堆芯材料会熔化并形成冕。冕的一个特点是存在衰变热,这在很大程度上决定了它与反应堆设施结构材料相互作用的性质。在这方面,对冕膜原型中衰变热的模拟方法提出了相当高的要求,这些要求与体积分布的均匀性和衰变热的强度有关。本文对现有的冕状体衰变热模拟方法进行了比较分析,这些方法被用于各种实验设施,以研究核电站反应堆熔毁严重事故中被动保护系统的运行情况。通过比较优缺点,确定了一种更实用的衰变热模拟方法,并提出了进一步改进所选方法的方法,以全面模拟真实冕膜的热场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
15
期刊最新文献
AUTOMATED CONTROL OFTHE THIN FILMS ELECTRICALCONDUCTIVITY BY THE EDDY CURRENT METHOD SIMULATION OF MULTIPOINT CONTACT UNDER THERMOELECTRIC TESTING TUDY OF THE INFLUENCE OF THE ACCUMULATED DOSE OF DAMAGE IN THE NEAR-SURFACE LAYER ON RESISTANCE TO EXTERNAL INFLUENCES ASSOCIATED WITH CORROSION PROCESSES DURING HIGH-TEMPERATURE ANNEALING Методика измерения диэлектрических коэффициентов полярных жидкостей в диапазоне микроволн ANALYSIS OF METHODS FOR SIMULATING THE DECAY HEAT IN CORIUM WHEN MODELING A SEVERE ACCIDENTS AT NUCLEAR POWER PLANT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1