{"title":"Effect of ultrasound homogenisation on the stability of curcumin microencapsulated by spray-drying","authors":"Hoang Le Tan, Vinh Tien Nguyen","doi":"10.47836/ifrj.30.4.06","DOIUrl":null,"url":null,"abstract":"Microencapsulated curcumin (MEC) that has been by spray-dried has the potential to improve curcumin stability during storage. In the present work, curcumin was encapsulated using soy lecithin and gum Arabic, and different ultrasound energy inputs (UE) for emulsion homogenisation were applied before spray-drying. The microencapsulation yield (MY), microencapsulation efficiency (ME), solubility, powder morphology, and curcumin degradation in the accelerated test were determined. The UE at 70 kJ/kg caused a 2.2-fold increase in the ME of the powder as compared to the control sample. Furthermore, increasing UE from 70 to 175 kJ/kg led to a decrease in particle size, MY, and ME by 32, 15, and 8.9%, respectively. The stability of MEC under different pH conditions was in the order of pH 2 > 7 > 9. Furthermore, MEC showed an improvement in curcumin stability after 30 days of light exposure at 70°C. In general, a lower UE energy showed better performance in terms of curcumin protection and stable morphology of the MEC powder. However, higher UE energy could create smaller particles, and increase product solubility.","PeriodicalId":13754,"journal":{"name":"international food research journal","volume":"54 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"international food research journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/ifrj.30.4.06","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microencapsulated curcumin (MEC) that has been by spray-dried has the potential to improve curcumin stability during storage. In the present work, curcumin was encapsulated using soy lecithin and gum Arabic, and different ultrasound energy inputs (UE) for emulsion homogenisation were applied before spray-drying. The microencapsulation yield (MY), microencapsulation efficiency (ME), solubility, powder morphology, and curcumin degradation in the accelerated test were determined. The UE at 70 kJ/kg caused a 2.2-fold increase in the ME of the powder as compared to the control sample. Furthermore, increasing UE from 70 to 175 kJ/kg led to a decrease in particle size, MY, and ME by 32, 15, and 8.9%, respectively. The stability of MEC under different pH conditions was in the order of pH 2 > 7 > 9. Furthermore, MEC showed an improvement in curcumin stability after 30 days of light exposure at 70°C. In general, a lower UE energy showed better performance in terms of curcumin protection and stable morphology of the MEC powder. However, higher UE energy could create smaller particles, and increase product solubility.
期刊介绍:
The International Food Research Journal (IFRJ) publishes papers in English, six (6) issues a year with the coverage of:
Food Science and Technology
Nutrition and Dietetics
Agriculture, multidisciplinary
Chemistry, multidisciplinary
The scope of the Journal includes:
Food Science, Food Technology and Food Biotechnology
Product Development and Sensory Evaluation
Food Habits, Nutrition, and Health
Food Safety and Quality
Food Chemistry, Food Microbiology, Food Analysis and Testing
Food Engineering
Food Packaging
Food Waste Management
Food Entrepreneur
Food Regulatory
Post-Harvest Food Management
Food Supply Chain Management
Halal Food and Management